


Microsoft hat GPT-4 allein mit dem „Prompt Project' zu einem medizinischen Experten gemacht! Bei mehr als einem Dutzend hochfein abgestimmter Modelle überstieg die professionelle Testgenauigkeit erstmals 90 %
Die neuesten Forschungsergebnisse von Microsoft beweisen erneut die Leistungsfähigkeit von Prompt Engineering –
Keine zusätzliche Feinabstimmung oder Expertenplanung erforderlich, GPT-4 kann allein durch Eingabeaufforderungen zum „Experten“ werden.
Mit ihrer neuesten Prompt-Strategie Medprompt erzielte GPT-4 im medizinischen Fachbereich die besten Ergebnisse in den neun Testsätzen von MultiMed QA.
Auf dem MedQA-Datensatz (Fragen zur medizinischen Zulassungsprüfung der Vereinigten Staaten) ermöglichte Medprompt erstmals, dass die Genauigkeit von GPT-4 90 % übersteigt und damit BioGPT und Med-PaLM sowie andere Feinabstimmungsmethoden übertrifft.
GPT-4 ist eine Technologie, die die Branche verändern kann, und wir haben noch lange nicht die Grenze der Eingabeaufforderungen erreicht, noch haben wir die Grenze der Feinabstimmung erreicht .
- Dynamische Auswahl mit wenigen Schüssen (Dynamische Auswahl mit wenigen Schüssen)
- Selbst -generiert Selbstgenerierte Gedankenkette
- Auswahl-Misch-Ensemble
festgelegt, daher werden hohe Anforderungen an die Repräsentativität und Breite der Beispiele gestellt.
Eine frühere Methode bestand darin, Domänenexpertenmanuell Beispiele erstellen zu lassen, aber trotzdem gibt es keine Garantie dafür, dass die von Experten kuratierten festen Beispiele mit wenigen Stichproben für jede Aufgabe repräsentativ sind.
Microsoft-Forscher haben eine Methode für dynamische Beispiele mit wenigen Schüssen vorgeschlagen. Die Idee ist, dass der Aufgabentrainingssatz als Quelle für Beispiele mit wenigen Schüssen verwendet werden kann. Wenn der Trainingssatz groß genug ist, können verschiedene ausgewählt werden für verschiedene Aufgabeneingaben. In Bezug auf spezifische Operationen verwendeten die Forscher zunächst das Modell text-embedding-ada-002, um Vektordarstellungen für jede Trainingsprobe und Testprobe zu generieren. Anschließend werden für jede Testprobe durch Vergleich der Ähnlichkeit der Vektoren die k Proben, die ihr am ähnlichsten sind, aus den Trainingsproben ausgewählt.Im Vergleich zur Feinabstimmungsmethode nutzt die dynamische Auswahl mit wenigen Schüssen das Training Daten, erfordert jedoch keine umfassenden Aktualisierungen der Modellparameter. Selbstgenerierte GedankenketteDie Chain of Thought (CoT)-Methode ist eine Methode, die es dem Modell ermöglicht, Schritt für Schritt zu denken und eine Reihe von Zwischenschritten für die Argumentation zu generierenDie vorherige Methode verließ sich darauf, dass Experten manuell einige Beispiele schreiben angeregte GedankenkettenHier fanden die Forscher heraus, dass GPT-4 einfach aufgefordert werden kann, Gedankenketten für Trainingsbeispiele zu generieren, indem man die folgende Eingabeaufforderung verwendet:
Aber die Forscher wiesen auch darauf hin, dass diese automatisch generierte Gedankenkette fehlerhafte Überlegungen enthalten könnte Schritt, daher wird ein Verifizierungs-Tag als Filter festgelegt, der Fehler effektiv reduzieren kann.
Verglichen mit den von Experten im Med-PaLM 2-Modell handgefertigten Beispielen für Gedankenketten sind die Grundprinzipien der von GPT-4 generierten Gedankenkette länger und die Logik der schrittweisen Argumentation feinkörniger.
Option Shuffling Integration
GPT-4 weist möglicherweise eine Tendenz bei der Verarbeitung von Multiple-Choice-Fragen auf, d
Um dieses Problem zu lösen, beschlossen die Forscher, die Reihenfolge der ursprünglichen Optionen neu zu ordnen, um die Auswirkungen zu verringern. Die ursprüngliche Reihenfolge der Optionen ist beispielsweise ABCD, die in BCDA, CDAB usw. geändert werden kann. Lassen Sie dann GPT-4 mehrere Vorhersagerunden durchführen, wobei in jeder Runde eine andere Reihenfolge der Optionen verwendet wird. Dies „zwingt“ GPT-4, den Inhalt der Optionen zu berücksichtigen. Abschließend stimmen Sie über die Ergebnisse mehrerer Vorhersagerunden ab und wählen Sie die konsistenteste und korrekteste Option. Die Kombination der oben genannten Prompt-Strategien ist Medprompt. Werfen wir einen Blick auf die Testergebnisse. Optimal in mehreren TestsIm Test verwendeten die Forscher den MultiMed QA-Bewertungsbenchmark.GPT-4, das die Medprompt-Prompting-Strategie nutzt, erreichte die höchsten Werte in allen neun Benchmark-Datensätzen von MultiMedQA und übertraf damit Flan-PaLM 540B und Med-PaLM 2.
Ergebnisse GPT-4 kombiniert Die Medprompt-Strategie wurde in mehreren medizinischen Untersuchungen eingesetzt. Sie schnitt beim Benchmark-Datensatz mit einer durchschnittlichen Genauigkeit von 91,3 % gut ab.
Unter diesen spielt die automatische Generierung von Denkkettenschritten die größte Rolle bei der Leistungsverbesserung Der von GPT-4 automatisch generierte Wert der Gedankenkette ist höher als der von Experten in Med-PaLM 2 kuratierte Wert, und es ist kein manueller Eingriff erforderlich
Abschließend untersuchten die Forscher auch die domänenübergreifenden Generalisierungsfähigkeiten von Medprompt, unter Verwendung von sechs verschiedenen Datensätzen aus dem MMLU-Benchmark, die Probleme in den Bereichen Elektrotechnik, maschinelles Lernen, Philosophie, professionelles Rechnungswesen, Berufsrecht und Berufspsychologie abdecken.
Zwei zusätzliche Datensätze mit NCLEX-Fragen (National Nursing Licensure Examination) wurden ebenfalls hinzugefügt.
Die Ergebnisse zeigen, dass die Wirkung von Medprompt auf diese Datensätze ähnlich der Verbesserung auf den medizinischen Datensatz von MultiMedQA ist, wobei die durchschnittliche Genauigkeit um 7,3 % erhöht wurde.
Das obige ist der detaillierte Inhalt vonMicrosoft hat GPT-4 allein mit dem „Prompt Project' zu einem medizinischen Experten gemacht! Bei mehr als einem Dutzend hochfein abgestimmter Modelle überstieg die professionelle Testgenauigkeit erstmals 90 %. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

0.Was bewirkt dieser Artikel? Wir schlagen DepthFM vor: ein vielseitiges und schnelles generatives monokulares Tiefenschätzungsmodell auf dem neuesten Stand der Technik. Zusätzlich zu herkömmlichen Tiefenschätzungsaufgaben demonstriert DepthFM auch hochmoderne Fähigkeiten bei nachgelagerten Aufgaben wie dem Tiefen-Inpainting. DepthFM ist effizient und kann Tiefenkarten innerhalb weniger Inferenzschritte synthetisieren. Lassen Sie uns diese Arbeit gemeinsam lesen ~ 1. Titel der Papierinformationen: DepthFM: FastMonocularDepthEstimationwithFlowMatching Autor: MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

Stellen Sie sich ein Modell der künstlichen Intelligenz vor, das nicht nur die Fähigkeit besitzt, die traditionelle Datenverarbeitung zu übertreffen, sondern auch eine effizientere Leistung zu geringeren Kosten erzielt. Dies ist keine Science-Fiction, DeepSeek-V2[1], das weltweit leistungsstärkste Open-Source-MoE-Modell, ist da. DeepSeek-V2 ist ein leistungsstarkes MoE-Sprachmodell (Mix of Experts) mit den Merkmalen eines wirtschaftlichen Trainings und einer effizienten Inferenz. Es besteht aus 236B Parametern, von denen 21B zur Aktivierung jedes Markers verwendet werden. Im Vergleich zu DeepSeek67B bietet DeepSeek-V2 eine stärkere Leistung, spart gleichzeitig 42,5 % der Trainingskosten, reduziert den KV-Cache um 93,3 % und erhöht den maximalen Generierungsdurchsatz auf das 5,76-fache. DeepSeek ist ein Unternehmen, das sich mit allgemeiner künstlicher Intelligenz beschäftigt

KI verändert tatsächlich die Mathematik. Vor kurzem hat Tao Zhexuan, der diesem Thema große Aufmerksamkeit gewidmet hat, die neueste Ausgabe des „Bulletin of the American Mathematical Society“ (Bulletin der American Mathematical Society) weitergeleitet. Zum Thema „Werden Maschinen die Mathematik verändern?“ äußerten viele Mathematiker ihre Meinung. Der gesamte Prozess war voller Funken, knallhart und aufregend. Der Autor verfügt über eine starke Besetzung, darunter der Fields-Medaillengewinner Akshay Venkatesh, der chinesische Mathematiker Zheng Lejun, der NYU-Informatiker Ernest Davis und viele andere bekannte Wissenschaftler der Branche. Die Welt der KI hat sich dramatisch verändert. Viele dieser Artikel wurden vor einem Jahr eingereicht.

Boston Dynamics Atlas tritt offiziell in die Ära der Elektroroboter ein! Gestern hat sich der hydraulische Atlas einfach „unter Tränen“ von der Bühne der Geschichte zurückgezogen. Heute gab Boston Dynamics bekannt, dass der elektrische Atlas im Einsatz ist. Es scheint, dass Boston Dynamics im Bereich kommerzieller humanoider Roboter entschlossen ist, mit Tesla zu konkurrieren. Nach der Veröffentlichung des neuen Videos wurde es innerhalb von nur zehn Stunden bereits von mehr als einer Million Menschen angesehen. Die alten Leute gehen und neue Rollen entstehen. Das ist eine historische Notwendigkeit. Es besteht kein Zweifel, dass dieses Jahr das explosive Jahr der humanoiden Roboter ist. Netizens kommentierten: Die Weiterentwicklung der Roboter hat dazu geführt, dass die diesjährige Eröffnungsfeier wie Menschen aussieht, und der Freiheitsgrad ist weitaus größer als der von Menschen. Aber ist das wirklich kein Horrorfilm? Zu Beginn des Videos liegt Atlas ruhig auf dem Boden, scheinbar auf dem Rücken. Was folgt, ist atemberaubend

Stehen Sie vor einer Verzögerung oder einer langsamen mobilen Datenverbindung auf dem iPhone? Normalerweise hängt die Stärke des Mobilfunk-Internets auf Ihrem Telefon von mehreren Faktoren ab, wie z. B. der Region, dem Mobilfunknetztyp, dem Roaming-Typ usw. Es gibt einige Dinge, die Sie tun können, um eine schnellere und zuverlässigere Mobilfunk-Internetverbindung zu erhalten. Fix 1 – Neustart des iPhone erzwingen Manchmal werden durch einen erzwungenen Neustart Ihres Geräts viele Dinge zurückgesetzt, einschließlich der Mobilfunkverbindung. Schritt 1 – Drücken Sie einfach einmal die Lauter-Taste und lassen Sie sie los. Drücken Sie anschließend die Leiser-Taste und lassen Sie sie wieder los. Schritt 2 – Der nächste Teil des Prozesses besteht darin, die Taste auf der rechten Seite gedrückt zu halten. Lassen Sie das iPhone den Neustart abschließen. Aktivieren Sie Mobilfunkdaten und überprüfen Sie die Netzwerkgeschwindigkeit. Überprüfen Sie es erneut. Fix 2 – Datenmodus ändern 5G bietet zwar bessere Netzwerkgeschwindigkeiten, funktioniert jedoch besser, wenn das Signal schwächer ist

Anfang dieses Monats schlugen Forscher des MIT und anderer Institutionen eine vielversprechende Alternative zu MLP vor – KAN. KAN übertrifft MLP in Bezug auf Genauigkeit und Interpretierbarkeit. Und es kann MLP, das mit einer größeren Anzahl von Parametern ausgeführt wird, mit einer sehr kleinen Anzahl von Parametern übertreffen. Beispielsweise gaben die Autoren an, dass sie KAN nutzten, um die Ergebnisse von DeepMind mit einem kleineren Netzwerk und einem höheren Automatisierungsgrad zu reproduzieren. Konkret verfügt DeepMinds MLP über etwa 300.000 Parameter, während KAN nur etwa 200 Parameter hat. KAN hat eine starke mathematische Grundlage wie MLP und basiert auf dem universellen Approximationssatz, während KAN auf dem Kolmogorov-Arnold-Darstellungssatz basiert. Wie in der folgenden Abbildung gezeigt, hat KAN

Die Zielerkennung ist ein relativ ausgereiftes Problem in autonomen Fahrsystemen, wobei die Fußgängererkennung einer der ersten Algorithmen ist, die eingesetzt werden. In den meisten Arbeiten wurde eine sehr umfassende Recherche durchgeführt. Die Entfernungswahrnehmung mithilfe von Fischaugenkameras für die Rundumsicht ist jedoch relativ wenig untersucht. Aufgrund der großen radialen Verzerrung ist es schwierig, die standardmäßige Bounding-Box-Darstellung in Fischaugenkameras zu implementieren. Um die obige Beschreibung zu vereinfachen, untersuchen wir erweiterte Begrenzungsrahmen-, Ellipsen- und allgemeine Polygondesigns in Polar-/Winkeldarstellungen und definieren eine mIOU-Metrik für die Instanzsegmentierung, um diese Darstellungen zu analysieren. Das vorgeschlagene Modell „fisheyeDetNet“ mit polygonaler Form übertrifft andere Modelle und erreicht gleichzeitig 49,5 % mAP auf dem Valeo-Fisheye-Kameradatensatz für autonomes Fahren

Ich weine zu Tode. Die Daten im Internet reichen überhaupt nicht aus. Das Trainingsmodell sieht aus wie „Die Tribute von Panem“, und KI-Forscher auf der ganzen Welt machen sich Gedanken darüber, wie sie diese datenhungrigen Esser ernähren sollen. Dieses Problem tritt insbesondere bei multimodalen Aufgaben auf. Zu einer Zeit, als sie ratlos waren, nutzte ein Start-up-Team der Abteilung der Renmin-Universität von China sein eigenes neues Modell, um als erstes in China einen „modellgenerierten Datenfeed selbst“ in die Realität umzusetzen. Darüber hinaus handelt es sich um einen zweigleisigen Ansatz auf der Verständnisseite und der Generierungsseite. Beide Seiten können hochwertige, multimodale neue Daten generieren und Datenrückmeldungen an das Modell selbst liefern. Was ist ein Modell? Awaker 1.0, ein großes multimodales Modell, das gerade im Zhongguancun-Forum erschienen ist. Wer ist das Team? Sophon-Motor. Gegründet von Gao Yizhao, einem Doktoranden an der Hillhouse School of Artificial Intelligence der Renmin University.
