


Der Aufbau generativer künstlicher Intelligenz erfordert mehr als nur den Rückgriff auf riesige Modelle
Der rasante Aufstieg der generativen künstlichen Intelligenz (GenAI) führt dazu, dass Unternehmen nach neuen und innovativen Wegen suchen, um die Leistungsfähigkeit dieser Technologie in Geschäftsanwendungen zu nutzen. Viele Unternehmen glauben, dass große Sprachmodelle (LLMs) die Art und Weise, wie KI-gesteuerte Geschäftsanwendungen erstellt werden, verändert haben. Alles, was erforderlich ist, ist, Daten in das LLM-Modell einzuspeisen, und es wird die Aufgabe erfüllen. Allerdings sind die Dinge nicht so einfach
Das Forschungs- und Beratungsunternehmen Forrester hat einen neuen Bericht veröffentlicht, der hervorhebt, dass kommerzielle GenAI-Anwendungen mehr als nur ein allgemeines LLM erfordern. Selbst das sorgfältigste abgestimmte und am besten trainierte LLM reicht möglicherweise nicht aus, um GenAI-basierte Anwendungen zu erstellen und sicher auszuführen. Dieser vereinfachte Ansatz ermöglicht es Unternehmen nicht, ihr gesamtes proprietäres Wissen für die Arbeit zu nutzen. Es birgt auch andere Risiken, darunter Skalierbarkeits-, Sicherheits- und Kostenprobleme.
Der Bericht von Forrester untersucht, wie 15 der größten Dienstleister GenAI nutzen, um mehr als 2.000 Unternehmen auf der ganzen Welt beim Schreiben von GenAI-basierten Geschäftsanwendungen zu unterstützen. Die Ergebnisse des Berichts legen nahe, dass Unternehmen eine „Layers, Gates and Pipes“-Architektur aufbauen müssen, um GenAI-basierte Anwendungen sicher und effektiv auszuführen.
Die Architektur „Schichten, Türen und Rohre“ nutzt Ressourcen aus vielen intelligenten Schichten, um interne und externe Funktionen miteinander zu verbinden. Außerdem sind Eingabe- und Ausgabekontrollgates erforderlich, um Menschen, das Unternehmen und das Modell selbst zu schützen. Darüber hinaus ist eine Anwendungspipeline erforderlich, um die Intelligenzschicht aufzufordern, einzubetten und zu orchestrieren, um Anfragen in Ausgaben umzuwandeln. Schließlich ist eine Test- und Lernschleife erforderlich, um die Ergebnisse zu testen und zu überwachen und entsprechende Anpassungen vorzunehmen.
Der Bericht geht tiefer auf die Elemente der „Schichten, Tore und Rohre“-Architektur ein und stellt fest, dass die Intelligenzschicht eine breite Palette von Funktionen umfasst, darunter allgemeine, eingebettete und spezialisierte GenAI-Modelle.
Zu den intelligenten Ressourcen, die Unternehmen selbst erstellen und verwalten sollten, gehören Softwareanwendungen, KI/ML-Modelle, private GenAI-Modelle, strukturierte und unstrukturierte Daten sowie Hinweise und Verhaltensweisen von Menschen. Zu den Informationsquellen, die Unternehmen von Anbietern beziehen sollten, sollten domänenspezifische GenAI-Modelle, öffentliche GenAI-Tools und gebündelte GenAI-Modelle wie SaaS-Anwendungen gehören.
Verwenden Sie Eingabetore, um fehlerhafte Anfragen, falsche Tipps und gefährliche Suchanfragen zu blockieren. Es kann auch vage Anfragen in beantwortbare Aufforderungen umwandeln. Output-Gates helfen dabei, die Ausgabe von Problemen anhand von Aspekten wie Compliance-Anforderungen und Sicherheit zu validieren.
Anwendungspipelines werden verwendet, um all dies durch API-First-Workflows miteinander zu verbinden. Sie tragen dazu bei, Ressourcen nahtlos von der Intelligenzebene aus zu kombinieren und so einen reibungslosen End-to-End-Ablauf zu gewährleisten. Das letzte Element der Architektur ist das Testen durch eine Testrückkopplungsschleife. Sie tragen dazu bei, Vertrauen, Vertrauen und Effektivität in Anwendungen aufzubauen
Dem Forrester-Bericht zufolge haben Unternehmen jetzt die Möglichkeit, Anwendungen aus unterschiedlichen Teilen zusammenzustellen, während sie in den nächsten Jahren eine vollständige Struktur zur Unterstützung von GenAI-Anwendungen aufbauen. Nur mit der richtigen Aufmerksamkeit können Unternehmen die Leistungsfähigkeit von GenAI-Geschäftsanwendungen voll ausschöpfen
Das obige ist der detaillierte Inhalt vonDer Aufbau generativer künstlicher Intelligenz erfordert mehr als nur den Rückgriff auf riesige Modelle. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Diese Seite berichtete am 27. Juni, dass Jianying eine von FaceMeng Technology, einer Tochtergesellschaft von ByteDance, entwickelte Videobearbeitungssoftware ist, die auf der Douyin-Plattform basiert und grundsätzlich kurze Videoinhalte für Benutzer der Plattform produziert Windows, MacOS und andere Betriebssysteme. Jianying kündigte offiziell die Aktualisierung seines Mitgliedschaftssystems an und führte ein neues SVIP ein, das eine Vielzahl von KI-Schwarztechnologien umfasst, wie z. B. intelligente Übersetzung, intelligente Hervorhebung, intelligente Verpackung, digitale menschliche Synthese usw. Preislich beträgt die monatliche Gebühr für das Clipping von SVIP 79 Yuan, die Jahresgebühr 599 Yuan (Hinweis auf dieser Website: entspricht 49,9 Yuan pro Monat), das fortlaufende Monatsabonnement beträgt 59 Yuan pro Monat und das fortlaufende Jahresabonnement beträgt 499 Yuan pro Jahr (entspricht 41,6 Yuan pro Monat). Darüber hinaus erklärte der Cut-Beamte auch, dass diejenigen, die den ursprünglichen VIP abonniert haben, das Benutzererlebnis verbessern sollen

Verbessern Sie die Produktivität, Effizienz und Genauigkeit der Entwickler, indem Sie eine abrufgestützte Generierung und ein semantisches Gedächtnis in KI-Codierungsassistenten integrieren. Übersetzt aus EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, Autor JanakiramMSV. Obwohl grundlegende KI-Programmierassistenten natürlich hilfreich sind, können sie oft nicht die relevantesten und korrektesten Codevorschläge liefern, da sie auf einem allgemeinen Verständnis der Softwaresprache und den gängigsten Mustern beim Schreiben von Software basieren. Der von diesen Coding-Assistenten generierte Code eignet sich zur Lösung der von ihnen zu lösenden Probleme, entspricht jedoch häufig nicht den Coding-Standards, -Konventionen und -Stilen der einzelnen Teams. Dabei entstehen häufig Vorschläge, die geändert oder verfeinert werden müssen, damit der Code in die Anwendung übernommen wird

Large Language Models (LLMs) werden auf riesigen Textdatenbanken trainiert und erwerben dort große Mengen an realem Wissen. Dieses Wissen wird in ihre Parameter eingebettet und kann dann bei Bedarf genutzt werden. Das Wissen über diese Modelle wird am Ende der Ausbildung „verdinglicht“. Am Ende des Vortrainings hört das Modell tatsächlich auf zu lernen. Richten Sie das Modell aus oder verfeinern Sie es, um zu erfahren, wie Sie dieses Wissen nutzen und natürlicher auf Benutzerfragen reagieren können. Aber manchmal reicht Modellwissen nicht aus, und obwohl das Modell über RAG auf externe Inhalte zugreifen kann, wird es als vorteilhaft angesehen, das Modell durch Feinabstimmung an neue Domänen anzupassen. Diese Feinabstimmung erfolgt mithilfe von Eingaben menschlicher Annotatoren oder anderer LLM-Kreationen, wobei das Modell auf zusätzliches Wissen aus der realen Welt trifft und dieses integriert

Um mehr über AIGC zu erfahren, besuchen Sie bitte: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou unterscheidet sich von der traditionellen Fragendatenbank, die überall im Internet zu sehen ist erfordert einen Blick über den Tellerrand hinaus. Large Language Models (LLMs) gewinnen in den Bereichen Datenwissenschaft, generative künstliche Intelligenz (GenAI) und künstliche Intelligenz zunehmend an Bedeutung. Diese komplexen Algorithmen verbessern die menschlichen Fähigkeiten, treiben Effizienz und Innovation in vielen Branchen voran und werden zum Schlüssel für Unternehmen, um wettbewerbsfähig zu bleiben. LLM hat ein breites Anwendungsspektrum und kann in Bereichen wie der Verarbeitung natürlicher Sprache, der Textgenerierung, der Spracherkennung und Empfehlungssystemen eingesetzt werden. Durch das Lernen aus großen Datenmengen ist LLM in der Lage, Text zu generieren

Herausgeber | Der Frage-Antwort-Datensatz (QA) von ScienceAI spielt eine entscheidende Rolle bei der Förderung der Forschung zur Verarbeitung natürlicher Sprache (NLP). Hochwertige QS-Datensätze können nicht nur zur Feinabstimmung von Modellen verwendet werden, sondern auch effektiv die Fähigkeiten großer Sprachmodelle (LLMs) bewerten, insbesondere die Fähigkeit, wissenschaftliche Erkenntnisse zu verstehen und zu begründen. Obwohl es derzeit viele wissenschaftliche QS-Datensätze aus den Bereichen Medizin, Chemie, Biologie und anderen Bereichen gibt, weisen diese Datensätze immer noch einige Mängel auf. Erstens ist das Datenformular relativ einfach, die meisten davon sind Multiple-Choice-Fragen. Sie sind leicht auszuwerten, schränken jedoch den Antwortauswahlbereich des Modells ein und können die Fähigkeit des Modells zur Beantwortung wissenschaftlicher Fragen nicht vollständig testen. Im Gegensatz dazu offene Fragen und Antworten

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

Herausgeber |. KX Im Bereich der Arzneimittelforschung und -entwicklung ist die genaue und effektive Vorhersage der Bindungsaffinität von Proteinen und Liganden für das Arzneimittelscreening und die Arzneimitteloptimierung von entscheidender Bedeutung. Aktuelle Studien berücksichtigen jedoch nicht die wichtige Rolle molekularer Oberflächeninformationen bei Protein-Ligand-Wechselwirkungen. Auf dieser Grundlage schlugen Forscher der Universität Xiamen ein neuartiges Framework zur multimodalen Merkmalsextraktion (MFE) vor, das erstmals Informationen über Proteinoberfläche, 3D-Struktur und -Sequenz kombiniert und einen Kreuzaufmerksamkeitsmechanismus verwendet, um verschiedene Modalitäten zu vergleichen Ausrichtung. Experimentelle Ergebnisse zeigen, dass diese Methode bei der Vorhersage von Protein-Ligand-Bindungsaffinitäten Spitzenleistungen erbringt. Darüber hinaus belegen Ablationsstudien die Wirksamkeit und Notwendigkeit der Proteinoberflächeninformation und der multimodalen Merkmalsausrichtung innerhalb dieses Rahmens. Verwandte Forschungen beginnen mit „S

Laut Nachrichten dieser Website vom 1. August hat SK Hynix heute (1. August) einen Blogbeitrag veröffentlicht, in dem es ankündigt, dass es am Global Semiconductor Memory Summit FMS2024 teilnehmen wird, der vom 6. bis 8. August in Santa Clara, Kalifornien, USA, stattfindet viele neue Technologien Generation Produkt. Einführung des Future Memory and Storage Summit (FutureMemoryandStorage), früher Flash Memory Summit (FlashMemorySummit), hauptsächlich für NAND-Anbieter, im Zusammenhang mit der zunehmenden Aufmerksamkeit für die Technologie der künstlichen Intelligenz wurde dieses Jahr in Future Memory and Storage Summit (FutureMemoryandStorage) umbenannt Laden Sie DRAM- und Speicheranbieter und viele weitere Akteure ein. Neues Produkt SK Hynix wurde letztes Jahr auf den Markt gebracht
