Heim > Datenbank > MySQL-Tutorial > 使用sqoop将mysql数据导入到hadoop_MySQL

使用sqoop将mysql数据导入到hadoop_MySQL

WBOY
Freigeben: 2016-06-01 13:01:19
Original
1330 Leute haben es durchsucht

hadoop的安装配置这里就不讲了。

Sqoop的安装也很简单。 完成sqoop的安装后,可以这样测试是否可以连接到mysql(注意:mysql的jar包要放到 SQOOP_HOME/lib 下): sqoop list-databases --connect jdbc:mysql://192.168.1.109:3306/ --username root --password 19891231 结果如下 \ 即说明sqoop已经可以正常使用了。 下面,要将mysql中的数据导入到hadoop中。 我准备的是一个300万条数据的身份证数据表: \ 先启动hive(使用命令行:hive 即可启动) 然后使用sqoop导入数据到hive: sqoop import --connect jdbc:mysql://192.168.1.109:3306/hadoop --username root --password 19891231 --table test_sfz --hive-import sqoop 会启动job来完成导入工作。 \ \ 完成导入用了2分20秒,还是不错的。 在hive中可以看到刚刚导入的数据表: \ 我们来一句sql测试一下数据: select * from test_sfz where id 可以看到,hive完成这个任务用了将近25秒,确实是挺慢的(在mysql中几乎是不费时间),但是要考虑到hive是创建了job在hadoop中跑,时间当然多。
接下来,我们会对这些数据进行复杂查询的测试: 我机子的配置如下: \ hadoop 是运行在虚拟机上的伪分布式,虚拟机OS是ubuntu12.04 64位,配置如下: \

TEST 1 计算平均年龄

测试数据:300.8 W 1. 计算广东的平均年龄 mysql:select (sum(year(NOW()) - SUBSTRING(borth,1,4))/count(*)) as ageAvge from test_sfz where address like '广东%'; 用时: 0.877s hive:select (sum(year('2014-10-01') - SUBSTRING(borth,1,4))/count(*)) as ageAvge from test_sfz where address like '广东%'; 用时:25.012s 2. 对每个城市的的平均年龄进行从高到低的排序 mysql:select address, (sum(year(NOW()) - SUBSTRING(borth,1,4))/count(*)) as ageAvge from test_sfz GROUP BY address order by ageAvge desc; 用时:2.949s hive:select address, (sum(year('2014-10-01') - SUBSTRING(borth,1,4))/count(*)) as ageAvge from test_sfz GROUP BY address order by ageAvge desc; 用时:51.29s 可以看到,在耗时上面,hive的增长速度较mysql慢。

TEST 2

测试数据:1200W mysql 引擎: MyISAM(为了加快查询速度) 导入到hive: \ 1. 计算广东的平均年龄 mysql:select (sum(year(NOW()) - SUBSTRING(borth,1,4))/count(*)) as ageAvge from test_sfz2 where address like '广东%'; 用时: 5.642s hive:select (sum(year('2014-10-01') - SUBSTRING(borth,1,4))/count(*)) as ageAvge from test_sfz2 where address like '广东%'; 用时:168.259s 2. 对每个城市的的平均年龄进行从高到低的排序 mysql:select address, (sum(year(NOW()) - SUBSTRING(borth,1,4))/count(*)) as ageAvge from test_sfz2 GROUP BY address order by ageAvge desc; 用时:11.964s hive:select address, (sum(year('2014-10-01') - SUBSTRING(borth,1,4))/count(*)) as ageAvge from test_sfz2 GROUP BY address order by ageAvge desc; 用时:311.714s

TEST 3

测试数据:2000W mysql 引擎: MyISAM(为了加快查询速度) 导入到hive: \ (这次用的时间很短!可能是因为TEST2中的导入时,我的主机在做其他耗资源的工作..) 1. 计算广东的平均年龄 mysql:select (sum(year(NOW()) - SUBSTRING(borth,1,4))/count(*)) as ageAvge from test_sfz2 where address like '广东%'; 用时: 6.605s hive:select (sum(year('2014-10-01') - SUBSTRING(borth,1,4))/count(*)) as ageAvge from test_sfz2 where address like '广东%'; 用时:188.206s 2. 对每个城市的的平均年龄进行从高到低的排序 mysql:select address, (sum(year(NOW()) - SUBSTRING(borth,1,4))/count(*)) as ageAvge from test_sfz2 GROUP BY address order by ageAvge desc; 用时:19.926s hive:select address, (sum(year('2014-10-01') - SUBSTRING(borth,1,4))/count(*)) as ageAvge from test_sfz2 GROUP BY address order by ageAvge desc; 用时:411.816s

 

Verwandte Etiketten:
Quelle:php.cn
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage