Inhaltsverzeichnis
1. Hintergrund
2. Gesamtstruktur
3 Adapterdesign
Heim Technologie-Peripheriegeräte KI Zeitreihen-Multitasking-integriertes Großmodell basierend auf Adapter und GPT

Zeitreihen-Multitasking-integriertes Großmodell basierend auf Adapter und GPT

Dec 15, 2023 pm 01:03 PM
gpt 模型 时间序列

Heute möchte ich mit Ihnen über die neuesten Arbeiten zur Vorhersage großer Modellzeitreihen sprechen. Sie stammen von der Alibaba Damo Academy, die ein universelles Zeitreihenanalyse-Framework auf Basis von Adaptern vorschlägt, das in Langzeitprognosen verwendet werden kann. Kurzzyklusvorhersage, Zero-Shot und wenige bemerkenswerte Ergebnisse wurden bei 7 Zeitreihenaufgaben erzielt, darunter -Shot, Anomalieerkennung, Zeitreihenklassifizierung und Zeitreihenfüllung.

Zeitreihen-Multitasking-integriertes Großmodell basierend auf Adapter und GPT

Papiertitel: Einheitsgröße: Universelle Zeitreihenanalyse mit vorab trainierten Sprachmodellen und speziell entwickelten Adaptern

Herunterladbarer Link: https://arxiv.org/pdf/2311.14782v1.pdf

1. Hintergrund

Im Bereich der Zeitreihenvorhersage ist eine der Schwierigkeiten bei der Erstellung groß angelegter Modelle der Mangel an ausreichenden Trainingsdaten wie im NLP- oder CV-Bereich. Dieser Artikel schlägt eine Lösung vor, die auf groß angelegten Modellen basiert, die im Bereich NLP oder CV trainiert wurden, in Kombination mit der Adaptertechnologie, um sie an Zeitreihen anzupassen und verschiedene Zeitreihenprobleme zu lösen.

Adapter in NLP, Es ist weit verbreitet In Bereichen wie CV, insbesondere in neueren Großmodellanwendungen, werden Adapter häufig verwendet, um eine leichte Feinabstimmung großer Modelle durchzuführen. Der Adapter ist ein leichtgewichtiges Netzwerk, indem Sie ihn in einige Module im großen Modell einfügen, dann die Parameter des großen Modells festlegen und nur die Parameter des Adapters aktualisieren, um eine leichte Feinabstimmung des großen Modells zu erreichen.

Zeitreihen-Multitasking-integriertes Großmodell basierend auf Adapter und GPTBilder

Jetzt möchte ich Ihnen vorstellen, wie wir in dieser Arbeit der Alibaba Damo Academy Adapter verwenden, um vorab trainierte NLP- und CV-Modelle zu kombinieren, um ein einheitliches Zeitreihenmodell zu erstellen.

2. Gesamtstruktur

Das in diesem Artikel vorgeschlagene Modell basiert auf dem vorab trainierten Sprachmodell der Freeze-Parameter und wird durch die Kombination von 4 Adaptertypen implementiert. Die Gesamtstruktur des Modells ist in der folgenden Abbildung dargestellt.

Zeitreihen-Multitasking-integriertes Großmodell basierend auf Adapter und GPTBilder

Zunächst verwenden wir für die Eingabezeitreihe die RevIN-Methode zur Normalisierung. Das bedeutet, dass wir von jeder Zeitreihe den Mittelwert subtrahieren und durch die Varianz dividieren. Als Nächstes verwenden wir die PatchTST-Methode, um die Zeitreihe durch Schiebefenster in mehrere Segmente aufzuteilen und Segmenteinbettungen zu generieren. Die verarbeiteten Zeitreihen werden in ein vorab trainiertes Sprachmodell im NLP-Bereich eingegeben. Während des gesamten Trainingsprozesses bleiben die ursprünglichen Parameter des Sprachmodells unverändert und wir werden nur die neu hinzugefügten 4 Arten von Adapterparametern aktualisieren

3 Adapterdesign

In diesem Artikel werden vier Arten von Adaptern vorgestellt, die angeschlossen werden können NLP und verschiedene Positionen großer Modelle im CV-Bereich, um das Ziel der Anpassung von Zeitreihen zu erreichen. Diese vier Adapter sind Zeitadapter, Kanaladapter, Frequenzadapter und Ausnahmeadapter. Zeitadapter: Zeitadapter ist ein MLP-Netzwerk, das zum Zusammenführen von Zeitdimensionsinformationen verwendet wird. In diesem Artikel verwenden wir eine Engpassstruktur, um hochdimensionale Informationen in der Zeitdimension oder Raumdimension zunächst einem niedrigdimensionalen Raum zuzuordnen und sie dann wieder dem hochdimensionalen Raum zuzuordnen. Der Zweck besteht darin, das Risiko einer Überanpassung beim Extrahieren zeitlicher Beziehungen zu vermeiden. Kanaladapter: Die Struktur des Kanaladapters ähnelt der des zeitlichen Adapters. Der Unterschied besteht darin, dass er in der räumlichen Dimension ausgeführt wird wird verwendet, um die Beziehung zwischen den Variablen der multivariaten Sequenz zu extrahieren.

Bild

Zeitreihen-Multitasking-integriertes Großmodell basierend auf Adapter und GPTFrequenzadapter: Dieser Teil ordnet die Zeitreiheninformationen im Frequenzbereich zu Im Frequenzbereich führt MLP im Frequenzbereich durch und ordnet es dann wieder dem Zeitbereich zu, um die Extraktion globaler Informationen wie des Frequenzbereichs zu erreichen. Anomalie-Adapter: Dieser Teil implementiert hauptsächlich eine neue Methode zur Erkennung von Zeitreihenanomalien. Die Aufmerksamkeits-Score-Matrix zeigt hier periodische Wiederholungsmerkmale, abnormale Sequenzen jedoch nicht a Der Gaußsche Kernel dient als Anomalieadapter und verwendet die Ausgabeergebnisse der Aufmerksamkeit und ihre berechnete KL-Divergenz zur Erkennung von Zeitreihenanomalien.

Bilder

Zeitreihen-Multitasking-integriertes Großmodell basierend auf Adapter und GPTDarüber hinaus werden unterschiedliche Daten von jedem Adapter in unterschiedlichem Maße beeinflusst. Daher wird in dem Artikel ein Gated-Netzwerk verwendet, um selektiv Adapter zu verwenden4 der Zeitreihenaufgaben wurden verglichen. Das in diesem Artikel vorgeschlagene vereinheitlichte Zeitreihenmodell erzielte bei jeder Aufgabe bessere Ergebnisse als verschiedene SOTA-Modelle in der Branche. Am Beispiel der Langzeitvorhersageaufgabe schneidet das einheitliche Modell auf Basis von GPT2+Adapter am besten ab

Zeitreihen-Multitasking-integriertes Großmodell basierend auf Adapter und GPTBilder

Das obige ist der detaillierte Inhalt vonZeitreihen-Multitasking-integriertes Großmodell basierend auf Adapter und GPT. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Das weltweit leistungsstärkste Open-Source-MoE-Modell ist da, mit chinesischen Fähigkeiten, die mit GPT-4 vergleichbar sind, und der Preis beträgt nur fast ein Prozent von GPT-4-Turbo Das weltweit leistungsstärkste Open-Source-MoE-Modell ist da, mit chinesischen Fähigkeiten, die mit GPT-4 vergleichbar sind, und der Preis beträgt nur fast ein Prozent von GPT-4-Turbo May 07, 2024 pm 04:13 PM

Stellen Sie sich ein Modell der künstlichen Intelligenz vor, das nicht nur die Fähigkeit besitzt, die traditionelle Datenverarbeitung zu übertreffen, sondern auch eine effizientere Leistung zu geringeren Kosten erzielt. Dies ist keine Science-Fiction, DeepSeek-V2[1], das weltweit leistungsstärkste Open-Source-MoE-Modell, ist da. DeepSeek-V2 ist ein leistungsstarkes MoE-Sprachmodell (Mix of Experts) mit den Merkmalen eines wirtschaftlichen Trainings und einer effizienten Inferenz. Es besteht aus 236B Parametern, von denen 21B zur Aktivierung jedes Markers verwendet werden. Im Vergleich zu DeepSeek67B bietet DeepSeek-V2 eine stärkere Leistung, spart gleichzeitig 42,5 % der Trainingskosten, reduziert den KV-Cache um 93,3 % und erhöht den maximalen Generierungsdurchsatz auf das 5,76-fache. DeepSeek ist ein Unternehmen, das sich mit allgemeiner künstlicher Intelligenz beschäftigt

KI untergräbt die mathematische Forschung! Der Gewinner der Fields-Medaille und der chinesisch-amerikanische Mathematiker führten 11 hochrangige Arbeiten an | Gefällt mir bei Terence Tao KI untergräbt die mathematische Forschung! Der Gewinner der Fields-Medaille und der chinesisch-amerikanische Mathematiker führten 11 hochrangige Arbeiten an | Gefällt mir bei Terence Tao Apr 09, 2024 am 11:52 AM

KI verändert tatsächlich die Mathematik. Vor kurzem hat Tao Zhexuan, der diesem Thema große Aufmerksamkeit gewidmet hat, die neueste Ausgabe des „Bulletin of the American Mathematical Society“ (Bulletin der American Mathematical Society) weitergeleitet. Zum Thema „Werden Maschinen die Mathematik verändern?“ äußerten viele Mathematiker ihre Meinung. Der gesamte Prozess war voller Funken, knallhart und aufregend. Der Autor verfügt über eine starke Besetzung, darunter der Fields-Medaillengewinner Akshay Venkatesh, der chinesische Mathematiker Zheng Lejun, der NYU-Informatiker Ernest Davis und viele andere bekannte Wissenschaftler der Branche. Die Welt der KI hat sich dramatisch verändert. Viele dieser Artikel wurden vor einem Jahr eingereicht.

KAN, das MLP ersetzt, wurde durch Open-Source-Projekte auf Faltung erweitert KAN, das MLP ersetzt, wurde durch Open-Source-Projekte auf Faltung erweitert Jun 01, 2024 pm 10:03 PM

Anfang dieses Monats schlugen Forscher des MIT und anderer Institutionen eine vielversprechende Alternative zu MLP vor – KAN. KAN übertrifft MLP in Bezug auf Genauigkeit und Interpretierbarkeit. Und es kann MLP, das mit einer größeren Anzahl von Parametern ausgeführt wird, mit einer sehr kleinen Anzahl von Parametern übertreffen. Beispielsweise gaben die Autoren an, dass sie KAN nutzten, um die Ergebnisse von DeepMind mit einem kleineren Netzwerk und einem höheren Automatisierungsgrad zu reproduzieren. Konkret verfügt DeepMinds MLP über etwa 300.000 Parameter, während KAN nur etwa 200 Parameter hat. KAN hat eine starke mathematische Grundlage wie MLP und basiert auf dem universellen Approximationssatz, während KAN auf dem Kolmogorov-Arnold-Darstellungssatz basiert. Wie in der folgenden Abbildung gezeigt, hat KAN

Hallo, elektrischer Atlas! Der Boston Dynamics-Roboter erwacht wieder zum Leben, seltsame 180-Grad-Bewegungen machen Musk Angst Hallo, elektrischer Atlas! Der Boston Dynamics-Roboter erwacht wieder zum Leben, seltsame 180-Grad-Bewegungen machen Musk Angst Apr 18, 2024 pm 07:58 PM

Boston Dynamics Atlas tritt offiziell in die Ära der Elektroroboter ein! Gestern hat sich der hydraulische Atlas einfach „unter Tränen“ von der Bühne der Geschichte zurückgezogen. Heute gab Boston Dynamics bekannt, dass der elektrische Atlas im Einsatz ist. Es scheint, dass Boston Dynamics im Bereich kommerzieller humanoider Roboter entschlossen ist, mit Tesla zu konkurrieren. Nach der Veröffentlichung des neuen Videos wurde es innerhalb von nur zehn Stunden bereits von mehr als einer Million Menschen angesehen. Die alten Leute gehen und neue Rollen entstehen. Das ist eine historische Notwendigkeit. Es besteht kein Zweifel, dass dieses Jahr das explosive Jahr der humanoiden Roboter ist. Netizens kommentierten: Die Weiterentwicklung der Roboter hat dazu geführt, dass die diesjährige Eröffnungsfeier wie Menschen aussieht, und der Freiheitsgrad ist weitaus größer als der von Menschen. Aber ist das wirklich kein Horrorfilm? Zu Beginn des Videos liegt Atlas ruhig auf dem Boden, scheinbar auf dem Rücken. Was folgt, ist atemberaubend

Quantilregression für probabilistische Zeitreihenprognosen Quantilregression für probabilistische Zeitreihenprognosen May 07, 2024 pm 05:04 PM

Ändern Sie nicht die Bedeutung des ursprünglichen Inhalts, optimieren Sie den Inhalt nicht, schreiben Sie den Inhalt neu und fahren Sie nicht fort. „Die Quantilregression erfüllt diesen Bedarf, indem sie Vorhersageintervalle mit quantifizierten Chancen bereitstellt. Dabei handelt es sich um eine statistische Technik zur Modellierung der Beziehung zwischen einer Prädiktorvariablen und einer Antwortvariablen, insbesondere wenn die bedingte Verteilung der Antwortvariablen von Interesse ist. Im Gegensatz zur herkömmlichen Regression Methoden: Die Quantilregression konzentriert sich auf die Schätzung der bedingten Größe der Antwortvariablen und nicht auf den bedingten Mittelwert Quantile der erklärten Variablen Y. Das bestehende Regressionsmodell ist eigentlich eine Methode zur Untersuchung der Beziehung zwischen der erklärten Variablen und der erklärenden Variablen. Sie konzentrieren sich auf die Beziehung zwischen erklärenden Variablen und erklärten Variablen

Google ist begeistert: JAX-Leistung übertrifft Pytorch und TensorFlow! Es könnte die schnellste Wahl für das GPU-Inferenztraining werden Google ist begeistert: JAX-Leistung übertrifft Pytorch und TensorFlow! Es könnte die schnellste Wahl für das GPU-Inferenztraining werden Apr 01, 2024 pm 07:46 PM

Die von Google geförderte Leistung von JAX hat in jüngsten Benchmark-Tests die von Pytorch und TensorFlow übertroffen und belegt bei 7 Indikatoren den ersten Platz. Und der Test wurde nicht auf der TPU mit der besten JAX-Leistung durchgeführt. Obwohl unter Entwicklern Pytorch immer noch beliebter ist als Tensorflow. Aber in Zukunft werden möglicherweise mehr große Modelle auf Basis der JAX-Plattform trainiert und ausgeführt. Modelle Kürzlich hat das Keras-Team drei Backends (TensorFlow, JAX, PyTorch) mit der nativen PyTorch-Implementierung und Keras2 mit TensorFlow verglichen. Zunächst wählen sie eine Reihe von Mainstream-Inhalten aus

Tesla-Roboter arbeiten in Fabriken, Musk: Der Freiheitsgrad der Hände wird dieses Jahr 22 erreichen! Tesla-Roboter arbeiten in Fabriken, Musk: Der Freiheitsgrad der Hände wird dieses Jahr 22 erreichen! May 06, 2024 pm 04:13 PM

Das neueste Video von Teslas Roboter Optimus ist veröffentlicht und er kann bereits in der Fabrik arbeiten. Bei normaler Geschwindigkeit sortiert es Batterien (Teslas 4680-Batterien) so: Der Beamte hat auch veröffentlicht, wie es bei 20-facher Geschwindigkeit aussieht – auf einer kleinen „Workstation“, pflücken und pflücken und pflücken: Dieses Mal wird es freigegeben. Eines der Highlights Der Vorteil des Videos besteht darin, dass Optimus diese Arbeit in der Fabrik völlig autonom und ohne menschliches Eingreifen während des gesamten Prozesses erledigt. Und aus Sicht von Optimus kann es auch die krumme Batterie aufnehmen und platzieren, wobei der Schwerpunkt auf der automatischen Fehlerkorrektur liegt: In Bezug auf die Hand von Optimus gab der NVIDIA-Wissenschaftler Jim Fan eine hohe Bewertung ab: Die Hand von Optimus ist der fünffingrige Roboter der Welt am geschicktesten. Seine Hände sind nicht nur taktil

FisheyeDetNet: der erste Zielerkennungsalgorithmus basierend auf einer Fischaugenkamera FisheyeDetNet: der erste Zielerkennungsalgorithmus basierend auf einer Fischaugenkamera Apr 26, 2024 am 11:37 AM

Die Zielerkennung ist ein relativ ausgereiftes Problem in autonomen Fahrsystemen, wobei die Fußgängererkennung einer der ersten Algorithmen ist, die eingesetzt werden. In den meisten Arbeiten wurde eine sehr umfassende Recherche durchgeführt. Die Entfernungswahrnehmung mithilfe von Fischaugenkameras für die Rundumsicht ist jedoch relativ wenig untersucht. Aufgrund der großen radialen Verzerrung ist es schwierig, die standardmäßige Bounding-Box-Darstellung in Fischaugenkameras zu implementieren. Um die obige Beschreibung zu vereinfachen, untersuchen wir erweiterte Begrenzungsrahmen-, Ellipsen- und allgemeine Polygondesigns in Polar-/Winkeldarstellungen und definieren eine mIOU-Metrik für die Instanzsegmentierung, um diese Darstellungen zu analysieren. Das vorgeschlagene Modell „fisheyeDetNet“ mit polygonaler Form übertrifft andere Modelle und erreicht gleichzeitig 49,5 % mAP auf dem Valeo-Fisheye-Kameradatensatz für autonomes Fahren

See all articles