Heim Technologie-Peripheriegeräte KI KI-Alchemie revolutioniert die Chemie: MIT-Wissenschaftler nutzen generative KI, um in sechs Sekunden neue chemische Reaktionen zu erzeugen

KI-Alchemie revolutioniert die Chemie: MIT-Wissenschaftler nutzen generative KI, um in sechs Sekunden neue chemische Reaktionen zu erzeugen

Dec 18, 2023 pm 12:49 PM
理论

KI-Alchemie revolutioniert die Chemie: MIT-Wissenschaftler nutzen generative KI, um in sechs Sekunden neue chemische Reaktionen zu erzeugen

Was neu geschrieben werden muss, ist: Herausgeber | Kaixia

Chemie, ausgehend von der alten Alchemie des „äquivalenten Austauschs“, war schon immer eine Disziplin, die die Wechselwirkung zwischen Substanzen untersucht und kontrolliert. Durch die kontinuierliche Erschließung und Nutzung neuer chemischer Reaktionen wurden viele neue Materialien entwickelt. Diese neuen Materialien machen das Leben der Menschen nicht nur komfortabler, sondern verbessern auch die Effizienz der Energienutzung und fördern eine nachhaltige Entwicklung. Eine grundlegende chemische Reaktion besteht aus Reaktanten, Übergangszuständen (TS) und Produkten. Übergangszustände sind entscheidende 3D-Strukturen in der Chemie und werden häufig verwendet, um chemische Reaktionsmechanismen zu verstehen, Reaktionsenergiebarrieren abzuschätzen und riesige Reaktionsnetzwerke zu erkunden. Aufgrund der extrem kurzen Zeit (Femtosekunden-Ordnung), in der sie während der Reaktion vorliegen, ist es jedoch nahezu unmöglich, den Übergangszustand experimentell zu isolieren und zu charakterisieren.

Umgeschriebener Inhalt: Normalerweise verwenden Menschen quantenchemische Berechnungsmethoden, um den Übergangszustand zwischen bekannten Reaktanten und Produkten durch wiederholtes Lösen der Schrödinger-Gleichung zu bestimmen. Allerdings ist diese Berechnungsmethode sehr teuer und bekannt für ihre häufigen Fehler. Gleichzeitig ist diese Methode durch persönliche Erfahrung, Intuition und Rechenressourcen begrenzt, und auch die chemischen Reaktionen, die jeder Mensch erforschen kann, sind begrenzt. Diese Einschränkung ist besonders fatal, wenn unbekannte komplexe Reaktionen untersucht werden. Dies führt dazu, dass Forscher einige potenzielle Reaktionen ignorieren und dadurch den Reaktionsmechanismus falsch einschätzen, was sich auf das Design katalytischer Materialien auswirkt

Als Reaktion auf dieses Problem entwickelte eine Forschergruppe des Massachusetts Institute of Technology (MIT) eine darauf basierende alternative Methode Maschinelles Lernen kann diese Strukturen in Sekundenschnelle entdecken. Ihr neues Modell könnte Chemikern dabei helfen, neue Reaktionen und Katalysatoren zu erforschen und zu entwerfen, um nützliche Produkte mit hohem Mehrwert zu erzeugen, etwa Kraftstoffverbindungen oder Arzneimittel. Darüber hinaus ist das Modell in der Lage, natürlich vorkommende chemische Reaktionen zu simulieren, die beispielsweise für die Entwicklung des Lebens auf der frühen Erde von entscheidender Bedeutung sind.

Heather Kulik, Professorin für Chemieingenieurwesen und Chemie am MIT, wies darauf hin, dass das Verständnis der spezifischen Struktur des Übergangszustands sehr wichtig ist, um Katalysatoren zu entwerfen oder zu verstehen, wie natürliche Systeme bestimmte Transformationen durchführen.

Verwandte Forschungsarbeiten tragen den Titel „Genaue Übergangszustände“. Generation mit einem objektbewussten „Equivariant Elementary Reaction Diffusion Model“ wurde in der internationalen Top-Zeitschrift „Nature Computational Science“ veröffentlicht.

Dr. Duan Chenru vom MIT ist der erste Autor des Artikels, ein Doktorand an der Cornell University, und Professor Heather Kulik vom MIT . Ursprünglicher Link: [https://rdcu.be/dtGSF]

KI-Alchemie revolutioniert die Chemie: MIT-Wissenschaftler nutzen generative KI, um in sechs Sekunden neue chemische Reaktionen zu erzeugenBitte klicken Sie auf den folgenden Link, um das Papier anzuzeigen: https://www.nature.com/articles/s43588-023-00563-7

MIT College News berichtete auch über diese Studie.

KI-Alchemie revolutioniert die Chemie: MIT-Wissenschaftler nutzen generative KI, um in sechs Sekunden neue chemische Reaktionen zu erzeugenLink zur Berichterstellung: https://news.mit.edu/2023/computational-model-captures-elusive-transition-states-1215 ist: Theoretische Schwierigkeiten

Derzeit können Chemiker quantenchemische Berechnungsmethoden basierend auf der Dichtefunktionaltheorie verwenden, um Übergangszustände zu berechnen. Diese Methode erfordert jedoch viele Rechenressourcen und es dauert Stunden oder sogar Tage, bis die Berechnung eines Übergangszustands abgeschlossen ist

Um das Problem der langen Berechnungszeit zu lösen, haben einige Forscher kürzlich damit begonnen, maschinelles Lernen einzusetzen Modelle zur Entdeckung von Übergangszustandsstrukturen. Allerdings erfordern fast alle bisher entwickelten Modelle, dass die beiden Reaktanten als Ganzes modelliert werden, wobei die Reaktanten relativ zueinander eine bestimmte geometrische Konfiguration beibehalten. Jede andere mögliche Konfiguration wird vom Modell des maschinellen Lernens als neue Reaktion verwechselt. Dr. Duan Chenru sagte, dass die Reaktantenmoleküle im Prinzip immer noch die gleiche chemische Reaktion vor und nach der Rotation erfahren können. Genau wie wenn wir über die Elektrolyse von Wasser sprechen, sagen wir nur, dass Wasser unter bestimmten Bedingungen in Sauerstoff und Wasserstoff umgewandelt wird, ohne die relativen geometrischen Positionen dieser Moleküle zu beschreiben. Bei herkömmlichen Methoden des maschinellen Lernens behandelt das Modell die Reaktionen von Reaktanten und Produkten an unterschiedlichen geometrischen Positionen jedoch als zwei unterschiedliche Reaktionen. Dadurch wird das Training des maschinellen Lernens schwieriger und die Genauigkeit nimmt ab

Das Diffusionsmodell ist ein generatives Modell, das in der Bildverarbeitung weit verbreitet ist. In jüngster Zeit werden Diffusionsmodelle auch zur Generierung von 3D-Molekül- und Proteinstrukturen, zum Protein-Ligand-Docking und zum strukturbasierten Arzneimitteldesign eingesetzt. In diesen Anwendungen verwenden Diffusionsmodelle 3D-Graph-Neuronale Netze (GNNs) der speziellen euklidischen Gruppe (SE(3)), um die Ausrichtung, Translations- und Rotationssymmetrien von Molekülen zu bewahren. Elementarreaktionen bestehen jedoch aus Reaktanten, Übergangszuständen und Produkten und folgen der „objektbewussten“ SE(3)-Symmetrie. Dies liegt daran, dass die Wechselwirkung zwischen den drei Objekten in der Elementarreaktion nicht im 3D-Euklidischen Raum stattfindet, sondern ein kausaler Zusammenhang auf der höherdimensionalen elektronischen potentiellen Energieoberfläche ist. Daher kann das bestehende Diffusionsmodell, das auf SE(3) GNN basiert, aufgrund der Zerstörung der Symmetrie Probleme haben . (Quelle: Paper)

KI-Alchemie revolutioniert die Chemie: MIT-Wissenschaftler nutzen generative KI, um in sechs Sekunden neue chemische Reaktionen zu erzeugenLösung

Das Team am MIT hat basierend auf den oben genannten Problemen eine neue Methode namens „OA-ReactDiff“ entwickelt. Das Team passte die SE(3)-Äquivarianz GNN an eine „objektbewusste“ Simulation an, d aus dem Bereich der generativen künstlichen Intelligenz, die stochastische Prozesse nutzt, um die Transformation zwischen einfachen und komplexen Verteilungen zu erfassen. Sobald das Modell die grundlegende Verteilung der Koexistenz dieser drei Strukturen gelernt hat, können wir ihm neue Reaktanten und Produkte geben und es wird versuchen, Übergangszustandsstrukturen zu erzeugen, die diesen Reaktanten und Produkten entsprechen

Abbildung: Übersicht über das äquivariante Diffusionsmodell (EDM) zur Generierung von Proben molekularer Systeme. (Quelle: Papier)

In der Studie verwendeten Forscher Quantencomputermethoden, um die Strukturen von Reaktanten, Übergangszuständen und Produkten von 9.000 verschiedenen chemischen Reaktionen im Trainingssatz zu ermitteln. Außerdem wurden etwa 1.000 bisher unbekannte Reaktionen getestet, was die Generierung von 40 möglichen Strukturen für jeden Übergangszustand erforderte. Auf dieser Grundlage führten die Forscher in Kombination mit Unsicherheitsschätzungen nur quantenchemische Berechnungen für die 14 % der Reaktionen mit der höchsten Modellunsicherheit durch und erreichten dabei erfolgreich einen durchschnittlichen absoluten Fehler von 2,6 kcal/mol. Dies ermöglicht Ergebnisse innerhalb einer Größenordnung Fehler bei der Verwendung von OA-ReactDiff zur Schätzung der Reaktionsraten bei 300 °C. Verglichen mit der durch quantenchemische Berechnungen ermittelten Übergangszustandsstruktur liegt der mittlere quadratische Fehler (RMSD) der durch OA-ReactDiff erzeugten Struktur im Bereich von 0,06 Angström (sechs Tausendstel Nanometer), eine Fehlergröße, die nahezu nicht zu unterscheiden ist mit bloßem Auge sichtbar

Was noch erfreulicher ist, ist, dass OA-ReactDiff nur 6 Sekunden benötigt, um eine Übergangszustandsstruktur zu erzeugen, was mindestens 1000-mal schneller ist als quantenchemische Berechnungen. Dadurch erreicht der Algorithmus erfolgreich eine extrem hohe Genauigkeit und Schnelligkeit bei der Berechnung von TS-Strukturen und Reaktionsenergiebarrieren. KI-Alchemie revolutioniert die Chemie: MIT-Wissenschaftler nutzen generative KI, um in sechs Sekunden neue chemische Reaktionen zu erzeugen

Abbildung: Bewertung der strukturellen Ähnlichkeit zwischen der von OA-ReactDiff generierten TS-Struktur und der realen TS-Struktur. (Quelle: Papier)

Professor Kulik beklagte auch: „Wir konnten uns kaum vorstellen, dass mit nur einem Gedanken Tausende von Übergangszuständen erzeugt werden könnten

KI-Alchemie revolutioniert die Chemie: MIT-Wissenschaftler nutzen generative KI, um in sechs Sekunden neue chemische Reaktionen zu erzeugenDer Inhalt, der neu geschrieben werden muss, ist: Illustration: OA-ReactDiff plus empfiehlt die Energieleistung von TS-Strukturen. (Quelle: Paper)

Zukunftserwartungen sind Erwartungen und Hoffnungen für die Zukunft. Es ist die Vision einer Person für ihre zukünftige Entwicklung und ihr Wachstum. Jeder hat seine eigenen Zukunftserwartungen, die darin bestehen können, persönliche Ziele zu erreichen, beruflichen Erfolg anzustreben, eine glückliche Familie zu gründen oder einen positiven Beitrag zur Gesellschaft zu leisten usw. Ganz gleich, wie die Zukunftserwartungen aussehen, es ist die Motivation und Richtung für die Menschen, hart zu arbeiten. Durch harte Arbeit und Beharrlichkeit können wir nach und nach unsere Zukunftserwartungen verwirklichen und unser Leben besser und erfüllender gestalten

Was neu geschrieben werden muss, ist: Diese Forschung ist die erste, die ein 3D-Diffusionsmodell bei chemischen Reaktionen verwendet. Die Bedeutung dieser Arbeit kann nicht ignoriert werden, obwohl die Forscher nur Verbindungen mit einer geringeren Anzahl von Atomen (

Professor Kulik wies darauf hin: „Selbst wenn es um größere Systeme oder sogar enzymkatalysierte Systeme geht, ist es immer noch möglich, Informationen über die verschiedenen Arten zu erhalten, auf denen sich Atome am wahrscheinlichsten neu anordnen

Die Forscher planen nun, ihr Modell um weitere Komponenten, beispielsweise Katalysatoren, zu erweitern. OA-ReactDiff nutzt die Zufälligkeit generativer KI und kann unerwartete chemische Reaktionen untersuchen. Diese Funktion ergänzt das bestehende, auf Chemie basierende, intuitive Reaktionsexplorations-Framework, hilft beim Aufbau eines vollständigeren chemischen Reaktionsnetzwerks und hilft bei der Entwicklung und dem Design neuer katalytischer Materialien. Die Forschung in diesem Bereich kann ihnen dabei helfen, die Entdeckung neuer Katalysatoren für bestimmte Reaktionen zu beschleunigen. Darüber hinaus könnte der von ihnen vorgeschlagene Algorithmus für die Entwicklung neuer Prozesse für Arzneimittel, Kraftstoffe oder andere nützliche Verbindungen nützlich sein, insbesondere wenn die Synthese viele chemische Schritte umfasst.

Dr. Duan Chenru wies darauf hin, dass alle diese Berechnungen in der Vergangenheit mit quantenchemischen Methoden durchgeführt wurden, aber jetzt können wir die Quantenchemie durch schnellere generative Modelle ersetzen

Die Forscher wiesen auch darauf hin, dass chemische Reaktionen den Kern der chemischen Forschung bilden . Neben dem Katalysatordesign, das auf industrielle Anwendungen ausgerichtet ist, bietet OA-ReactDiff auch viele interessante potenzielle Anwendungen, wie die Erforschung von Gaswechselwirkungen, die auf anderen Planeten auftreten können, die Simulation von Reaktionsprozessen während der Entwicklung des frühen Lebens auf der Erde usw.

Das obige ist der detaillierte Inhalt vonKI-Alchemie revolutioniert die Chemie: MIT-Wissenschaftler nutzen generative KI, um in sechs Sekunden neue chemische Reaktionen zu erzeugen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. Crossplay haben?
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

„Defect Spectrum' durchbricht die Grenzen der herkömmlichen Fehlererkennung und erreicht erstmals eine hochpräzise und umfassende semantische Fehlererkennung in der Industrie. „Defect Spectrum' durchbricht die Grenzen der herkömmlichen Fehlererkennung und erreicht erstmals eine hochpräzise und umfassende semantische Fehlererkennung in der Industrie. Jul 26, 2024 pm 05:38 PM

In der modernen Fertigung ist die genaue Fehlererkennung nicht nur der Schlüssel zur Sicherstellung der Produktqualität, sondern auch der Kern für die Verbesserung der Produktionseffizienz. Allerdings mangelt es vorhandenen Datensätzen zur Fehlererkennung häufig an der Genauigkeit und dem semantischen Reichtum, die für praktische Anwendungen erforderlich sind, was dazu führt, dass Modelle bestimmte Fehlerkategorien oder -orte nicht identifizieren können. Um dieses Problem zu lösen, hat ein Spitzenforschungsteam bestehend aus der Hong Kong University of Science and Technology Guangzhou und Simou Technology innovativ den „DefectSpectrum“-Datensatz entwickelt, der eine detaillierte und semantisch reichhaltige groß angelegte Annotation von Industriedefekten ermöglicht. Wie in Tabelle 1 gezeigt, bietet der Datensatz „DefectSpectrum“ im Vergleich zu anderen Industriedatensätzen die meisten Fehleranmerkungen (5438 Fehlerproben) und die detaillierteste Fehlerklassifizierung (125 Fehlerkategorien).

Das NVIDIA-Dialogmodell ChatQA wurde auf Version 2.0 weiterentwickelt, wobei die angegebene Kontextlänge 128 KB beträgt Das NVIDIA-Dialogmodell ChatQA wurde auf Version 2.0 weiterentwickelt, wobei die angegebene Kontextlänge 128 KB beträgt Jul 26, 2024 am 08:40 AM

Die offene LLM-Community ist eine Ära, in der hundert Blumen blühen und konkurrieren. Sie können Llama-3-70B-Instruct, QWen2-72B-Instruct, Nemotron-4-340B-Instruct, Mixtral-8x22BInstruct-v0.1 und viele andere sehen hervorragende Darsteller. Allerdings weisen offene Modelle im Vergleich zu den proprietären Großmodellen GPT-4-Turbo in vielen Bereichen noch erhebliche Lücken auf. Zusätzlich zu allgemeinen Modellen wurden einige offene Modelle entwickelt, die sich auf Schlüsselbereiche spezialisieren, wie etwa DeepSeek-Coder-V2 für Programmierung und Mathematik und InternVL für visuelle Sprachaufgaben.

Training mit Millionen von Kristalldaten zur Lösung kristallographischer Phasenprobleme, die Deep-Learning-Methode PhAI wird in Science veröffentlicht Training mit Millionen von Kristalldaten zur Lösung kristallographischer Phasenprobleme, die Deep-Learning-Methode PhAI wird in Science veröffentlicht Aug 08, 2024 pm 09:22 PM

Herausgeber |KX Bis heute sind die durch die Kristallographie ermittelten Strukturdetails und Präzision, von einfachen Metallen bis hin zu großen Membranproteinen, mit keiner anderen Methode zu erreichen. Die größte Herausforderung, das sogenannte Phasenproblem, bleibt jedoch die Gewinnung von Phaseninformationen aus experimentell bestimmten Amplituden. Forscher der Universität Kopenhagen in Dänemark haben eine Deep-Learning-Methode namens PhAI entwickelt, um Kristallphasenprobleme zu lösen. Ein Deep-Learning-Neuronales Netzwerk, das mithilfe von Millionen künstlicher Kristallstrukturen und den entsprechenden synthetischen Beugungsdaten trainiert wird, kann genaue Elektronendichtekarten erstellen. Die Studie zeigt, dass diese Deep-Learning-basierte Ab-initio-Strukturlösungsmethode das Phasenproblem mit einer Auflösung von nur 2 Angström lösen kann, was nur 10 bis 20 % der bei atomarer Auflösung verfügbaren Daten im Vergleich zur herkömmlichen Ab-initio-Berechnung entspricht

Google AI gewann die Silbermedaille der IMO Mathematical Olympiad, das mathematische Argumentationsmodell AlphaProof wurde eingeführt und Reinforcement Learning ist zurück Google AI gewann die Silbermedaille der IMO Mathematical Olympiad, das mathematische Argumentationsmodell AlphaProof wurde eingeführt und Reinforcement Learning ist zurück Jul 26, 2024 pm 02:40 PM

Für KI ist die Mathematikolympiade kein Problem mehr. Am Donnerstag hat die künstliche Intelligenz von Google DeepMind eine Meisterleistung vollbracht: Sie nutzte KI, um meiner Meinung nach die eigentliche Frage der diesjährigen Internationalen Mathematikolympiade zu lösen, und war nur einen Schritt davon entfernt, die Goldmedaille zu gewinnen. Der IMO-Wettbewerb, der gerade letzte Woche zu Ende ging, hatte sechs Fragen zu Algebra, Kombinatorik, Geometrie und Zahlentheorie. Das von Google vorgeschlagene hybride KI-System beantwortete vier Fragen richtig und erzielte 28 Punkte und erreichte damit die Silbermedaillenstufe. Anfang dieses Monats hatte der UCLA-Professor Terence Tao gerade die KI-Mathematische Olympiade (AIMO Progress Award) mit einem Millionenpreis gefördert. Unerwarteterweise hatte sich das Niveau der KI-Problemlösung vor Juli auf dieses Niveau verbessert. Beantworten Sie die Fragen meiner Meinung nach gleichzeitig. Am schwierigsten ist es meiner Meinung nach, da sie die längste Geschichte, den größten Umfang und die negativsten Fragen haben

Der Standpunkt der Natur: Die Erprobung künstlicher Intelligenz in der Medizin ist im Chaos. Was ist zu tun? Der Standpunkt der Natur: Die Erprobung künstlicher Intelligenz in der Medizin ist im Chaos. Was ist zu tun? Aug 22, 2024 pm 04:37 PM

Herausgeber | ScienceAI Basierend auf begrenzten klinischen Daten wurden Hunderte medizinischer Algorithmen genehmigt. Wissenschaftler diskutieren darüber, wer die Werkzeuge testen soll und wie dies am besten geschieht. Devin Singh wurde Zeuge, wie ein pädiatrischer Patient in der Notaufnahme einen Herzstillstand erlitt, während er lange auf eine Behandlung wartete, was ihn dazu veranlasste, den Einsatz von KI zu erforschen, um Wartezeiten zu verkürzen. Mithilfe von Triage-Daten aus den Notaufnahmen von SickKids erstellten Singh und Kollegen eine Reihe von KI-Modellen, um mögliche Diagnosen zu stellen und Tests zu empfehlen. Eine Studie zeigte, dass diese Modelle die Zahl der Arztbesuche um 22,3 % verkürzen können und die Verarbeitung der Ergebnisse pro Patient, der einen medizinischen Test benötigt, um fast drei Stunden beschleunigt. Der Erfolg von Algorithmen der künstlichen Intelligenz in der Forschung bestätigt dies jedoch nur

Um ein neues wissenschaftliches und komplexes Frage-Antwort-Benchmark- und Bewertungssystem für große Modelle bereitzustellen, haben UNSW, Argonne, die University of Chicago und andere Institutionen gemeinsam das SciQAG-Framework eingeführt Um ein neues wissenschaftliches und komplexes Frage-Antwort-Benchmark- und Bewertungssystem für große Modelle bereitzustellen, haben UNSW, Argonne, die University of Chicago und andere Institutionen gemeinsam das SciQAG-Framework eingeführt Jul 25, 2024 am 06:42 AM

Herausgeber | Der Frage-Antwort-Datensatz (QA) von ScienceAI spielt eine entscheidende Rolle bei der Förderung der Forschung zur Verarbeitung natürlicher Sprache (NLP). Hochwertige QS-Datensätze können nicht nur zur Feinabstimmung von Modellen verwendet werden, sondern auch effektiv die Fähigkeiten großer Sprachmodelle (LLMs) bewerten, insbesondere die Fähigkeit, wissenschaftliche Erkenntnisse zu verstehen und zu begründen. Obwohl es derzeit viele wissenschaftliche QS-Datensätze aus den Bereichen Medizin, Chemie, Biologie und anderen Bereichen gibt, weisen diese Datensätze immer noch einige Mängel auf. Erstens ist das Datenformular relativ einfach, die meisten davon sind Multiple-Choice-Fragen. Sie sind leicht auszuwerten, schränken jedoch den Antwortauswahlbereich des Modells ein und können die Fähigkeit des Modells zur Beantwortung wissenschaftlicher Fragen nicht vollständig testen. Im Gegensatz dazu offene Fragen und Antworten

PRO |. Warum verdienen große Modelle, die auf MoE basieren, mehr Aufmerksamkeit? PRO |. Warum verdienen große Modelle, die auf MoE basieren, mehr Aufmerksamkeit? Aug 07, 2024 pm 07:08 PM

Im Jahr 2023 entwickeln sich fast alle Bereiche der KI in beispielloser Geschwindigkeit weiter. Gleichzeitig verschiebt die KI ständig die technologischen Grenzen wichtiger Bereiche wie der verkörperten Intelligenz und des autonomen Fahrens. Wird der Status von Transformer als Mainstream-Architektur großer KI-Modelle durch den multimodalen Trend erschüttert? Warum ist die Erforschung großer Modelle auf Basis der MoE-Architektur (Mixture of Experts) zu einem neuen Trend in der Branche geworden? Können Large Vision Models (LVM) ein neuer Durchbruch im allgemeinen Sehvermögen sein? ...Aus dem PRO-Mitglieder-Newsletter 2023 dieser Website, der in den letzten sechs Monaten veröffentlicht wurde, haben wir 10 spezielle Interpretationen ausgewählt, die eine detaillierte Analyse der technologischen Trends und industriellen Veränderungen in den oben genannten Bereichen bieten, um Ihnen dabei zu helfen, Ihre Ziele in der Zukunft zu erreichen Jahr vorbereitet sein. Diese Interpretation stammt aus Week50 2023

Identifizieren Sie automatisch die besten Moleküle und reduzieren Sie die Synthesekosten. Das MIT entwickelt ein Algorithmus-Framework für die Entscheidungsfindung im molekularen Design Identifizieren Sie automatisch die besten Moleküle und reduzieren Sie die Synthesekosten. Das MIT entwickelt ein Algorithmus-Framework für die Entscheidungsfindung im molekularen Design Jun 22, 2024 am 06:43 AM

Herausgeber |. Der Einsatz von Ziluo AI bei der Rationalisierung der Arzneimittelforschung nimmt explosionsartig zu. Durchsuchen Sie Milliarden von Kandidatenmolekülen nach solchen, die möglicherweise über Eigenschaften verfügen, die für die Entwicklung neuer Medikamente erforderlich sind. Es sind so viele Variablen zu berücksichtigen, von Materialpreisen bis hin zum Fehlerrisiko, dass es keine leichte Aufgabe ist, die Kosten für die Synthese der besten Kandidatenmoleküle abzuwägen, selbst wenn Wissenschaftler KI einsetzen. Hier entwickelten MIT-Forscher SPARROW, ein quantitatives Entscheidungsalgorithmus-Framework, um automatisch die besten molekularen Kandidaten zu identifizieren und so die Synthesekosten zu minimieren und gleichzeitig die Wahrscheinlichkeit zu maximieren, dass die Kandidaten die gewünschten Eigenschaften aufweisen. Der Algorithmus bestimmte auch die Materialien und experimentellen Schritte, die zur Synthese dieser Moleküle erforderlich sind. SPARROW berücksichtigt die Kosten für die gleichzeitige Synthese einer Charge von Molekülen, da häufig mehrere Kandidatenmoleküle verfügbar sind

See all articles