


Analyse häufig verwendeter KI-Aktivierungsfunktionen: Deep-Learning-Praxis von Sigmoid, Tanh, ReLU und Softmax
Aktivierungsfunktionen spielen eine entscheidende Rolle beim Deep Learning. Sie können nichtlineare Eigenschaften in neuronale Netze einführen, wodurch das Netzwerk besser lernen und komplexe Eingabe-Ausgabe-Beziehungen simulieren kann. Die richtige Auswahl und Verwendung von Aktivierungsfunktionen hat einen wichtigen Einfluss auf die Leistung und den Trainingseffekt neuronaler Netze. Nachteile und Optimierungslösungen Erkunden Sie fünf Dimensionen, um Ihnen ein umfassendes Verständnis der Aktivierungsfunktionen zu vermitteln.
1. Sigmoid-Funktion
Sigmoid-FunktionsformelEinführung: Die Sigmoid-Funktion ist eine häufig verwendete nichtlineare Funktion, die jede reelle Zahl zwischen 0 und 1 abbilden kann.
SIgmoid-Funktionsbild Anwendungsszenario:
- Behandeln Sie Regressionsprobleme oder binäre Klassifizierungsprobleme.
- Das Folgende sind die Vorteile:
- kann jeden Eingabebereich
- zwischen 0 und 1 zuordnen, was zum Ausdrücken von Wahrscheinlichkeiten geeignet ist.
- Der Bereich ist begrenzt, was die Berechnungen einfacher und schneller macht. Nachteile: Wenn der Eingabewert sehr groß ist, kann der Gradient sehr klein werden, was zum Problem des verschwindenden Gradienten führt.
- Verwenden Sie andere Aktivierungsfunktionen wie ReLU: Verwenden Sie andere Aktivierungsfunktionen in Kombination mit ReLU oder seinen Varianten (Leaky ReLU und Parametric ReLU).
- Verwenden Sie Optimierungstechniken in Deep-Learning-Frameworks: Verwenden Sie Optimierungstechniken, die von Deep-Learning-Frameworks (wie TensorFlow oder PyTorch) bereitgestellt werden, wie z. B. Gradient Clipping, Lernratenanpassung usw. 2. Tanh-Funktion
Tanh-Funktionsformel Einführung: Die T
Tanh-FunktionsbildAnwendungsszenario: Wenn eine Funktion erforderlich ist, die steiler als Sigmoid ist, oder in bestimmten Anwendungen, die eine Ausgabe im Bereich von -1 bis 1 erfordern.
Das Folgende sind die Vorteile: Sie bietet einen größeren Dynamikbereich und eine steilere Kurve, was die Konvergenzgeschwindigkeit beschleunigen kann
Der Nachteil der Tanh-Funktion besteht darin, dass sich ihre Ableitung schnell 0 nähert, wenn der Eingang nahe bei ±1 liegt , wodurch der Gradient verschwindet Problem
Optimierungslösung:
- Verwenden Sie andere Aktivierungsfunktionen wie ReLU: Verwenden Sie andere Aktivierungsfunktionen wie ReLU oder seine Varianten (Leaky ReLU und Parametric ReLU) in Kombination.
- Restverbindung verwenden: Restverbindung ist eine effektive Optimierungsstrategie, wie z. B. ResNet (Restnetzwerk).
ReLU-Funktion
ReLU-FunktionsformelEinführung: Die ReLU-Aktivierungsfunktion ist eine einfache nichtlineare Funktion und ihr mathematischer Ausdruck ist f(x) = max( 0,
ReLU-FunktionsbildAnwendungsszenario: Die ReLU-Aktivierungsfunktion wird häufig in Deep-Learning-Modellen verwendet, insbesondere in Faltungs-Neuronalen Netzen (CNN). Seine Hauptvorteile bestehen darin, dass es einfach zu berechnen ist, das Problem des verschwindenden Gradienten effektiv lindern und das Modelltraining beschleunigen kann. Daher wird ReLU häufig als bevorzugte Aktivierungsfunktion beim Training tiefer neuronaler Netze verwendet.
Das Folgende sind die Vorteile:
- Verringern Sie das Problem des verschwindenden Gradienten: Im Vergleich zu Aktivierungsfunktionen wie Sigmoid und Tanh verkleinert ReLU den Gradienten nicht, wenn der Aktivierungswert positiv ist, und vermeidet so den verschwindenden Gradienten Problem.
- Beschleunigtes Training: Aufgrund der Einfachheit und Recheneffizienz von ReLU kann es den Modelltrainingsprozess erheblich beschleunigen.
Nachteile:
- „Totes Neuron“-Problem: Wenn der Eingabewert kleiner oder gleich 0 ist, ist die Ausgabe von ReLU 0, was dazu führt, dass das Neuron ausfällt. totes Neuron „Yuan“.
- Asymmetrie: Der Ausgabebereich von ReLU ist [0, +∞), und die Ausgabe ist 0, wenn der Eingabewert negativ ist, was zu einer asymmetrischen Verteilung der ReLU-Ausgabe führt und die Vielfalt der Generation begrenzt .
Optimierungsschema:
- Leaky ReLU: Leaky ReLU gibt eine kleinere Steigung aus, wenn die Eingabe kleiner oder gleich 0 ist, wodurch das vollständige Problem des „toten Neurons“ vermieden wird.
- Parametrisches ReLU (PReLU): Im Gegensatz zu Leaky ReLU ist die Steigung von PReLU nicht festgelegt, sondern kann anhand der Daten erlernt und optimiert werden. 4. Softmax-Funktion: Formel für Softmax-Funktion Sein Hauptmerkmal besteht darin, dass der Ausgabewertbereich zwischen 0 und 1 liegt und die Summe aller Ausgabewerte 1 beträgt.
Softmax-Berechnungsprozess
Anwendungsszenario:
Weit verbreitet in der Verarbeitung natürlicher Sprache, Bildklassifizierung, Spracherkennung und anderen Bereichen. Das Folgende sind die Vorteile: Bei Problemen mit mehreren Klassifizierungen kann für jede Kategorie ein relativer Wahrscheinlichkeitswert bereitgestellt werden, um die spätere Entscheidungsfindung und Klassifizierung zu erleichtern.
Nachteile: Es wird Probleme mit dem Verschwinden des Gradienten oder der Explosion des Gradienten geben.
Optimierungsschema:
- Verwenden Sie andere Aktivierungsfunktionen wie ReLU: Verwenden Sie andere Aktivierungsfunktionen in Kombination mit ReLU oder seinen Varianten (Leaky ReLU und Parametric ReLU).
Verwenden Sie Optimierungstechniken in Deep-Learning-Frameworks: Verwenden Sie Optimierungstechniken, die von Deep-Learning-Frameworks (wie TensorFlow oder PyTorch) bereitgestellt werden, wie z. B. Batch-Normalisierung, Gewichtsabfall usw.
Das obige ist der detaillierte Inhalt vonAnalyse häufig verwendeter KI-Aktivierungsfunktionen: Deep-Learning-Praxis von Sigmoid, Tanh, ReLU und Softmax. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Diese Seite berichtete am 27. Juni, dass Jianying eine von FaceMeng Technology, einer Tochtergesellschaft von ByteDance, entwickelte Videobearbeitungssoftware ist, die auf der Douyin-Plattform basiert und grundsätzlich kurze Videoinhalte für Benutzer der Plattform produziert Windows, MacOS und andere Betriebssysteme. Jianying kündigte offiziell die Aktualisierung seines Mitgliedschaftssystems an und führte ein neues SVIP ein, das eine Vielzahl von KI-Schwarztechnologien umfasst, wie z. B. intelligente Übersetzung, intelligente Hervorhebung, intelligente Verpackung, digitale menschliche Synthese usw. Preislich beträgt die monatliche Gebühr für das Clipping von SVIP 79 Yuan, die Jahresgebühr 599 Yuan (Hinweis auf dieser Website: entspricht 49,9 Yuan pro Monat), das fortlaufende Monatsabonnement beträgt 59 Yuan pro Monat und das fortlaufende Jahresabonnement beträgt 499 Yuan pro Jahr (entspricht 41,6 Yuan pro Monat). Darüber hinaus erklärte der Cut-Beamte auch, dass diejenigen, die den ursprünglichen VIP abonniert haben, das Benutzererlebnis verbessern sollen

Verbessern Sie die Produktivität, Effizienz und Genauigkeit der Entwickler, indem Sie eine abrufgestützte Generierung und ein semantisches Gedächtnis in KI-Codierungsassistenten integrieren. Übersetzt aus EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, Autor JanakiramMSV. Obwohl grundlegende KI-Programmierassistenten natürlich hilfreich sind, können sie oft nicht die relevantesten und korrektesten Codevorschläge liefern, da sie auf einem allgemeinen Verständnis der Softwaresprache und den gängigsten Mustern beim Schreiben von Software basieren. Der von diesen Coding-Assistenten generierte Code eignet sich zur Lösung der von ihnen zu lösenden Probleme, entspricht jedoch häufig nicht den Coding-Standards, -Konventionen und -Stilen der einzelnen Teams. Dabei entstehen häufig Vorschläge, die geändert oder verfeinert werden müssen, damit der Code in die Anwendung übernommen wird

Um mehr über AIGC zu erfahren, besuchen Sie bitte: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou unterscheidet sich von der traditionellen Fragendatenbank, die überall im Internet zu sehen ist erfordert einen Blick über den Tellerrand hinaus. Large Language Models (LLMs) gewinnen in den Bereichen Datenwissenschaft, generative künstliche Intelligenz (GenAI) und künstliche Intelligenz zunehmend an Bedeutung. Diese komplexen Algorithmen verbessern die menschlichen Fähigkeiten, treiben Effizienz und Innovation in vielen Branchen voran und werden zum Schlüssel für Unternehmen, um wettbewerbsfähig zu bleiben. LLM hat ein breites Anwendungsspektrum und kann in Bereichen wie der Verarbeitung natürlicher Sprache, der Textgenerierung, der Spracherkennung und Empfehlungssystemen eingesetzt werden. Durch das Lernen aus großen Datenmengen ist LLM in der Lage, Text zu generieren

Large Language Models (LLMs) werden auf riesigen Textdatenbanken trainiert und erwerben dort große Mengen an realem Wissen. Dieses Wissen wird in ihre Parameter eingebettet und kann dann bei Bedarf genutzt werden. Das Wissen über diese Modelle wird am Ende der Ausbildung „verdinglicht“. Am Ende des Vortrainings hört das Modell tatsächlich auf zu lernen. Richten Sie das Modell aus oder verfeinern Sie es, um zu erfahren, wie Sie dieses Wissen nutzen und natürlicher auf Benutzerfragen reagieren können. Aber manchmal reicht Modellwissen nicht aus, und obwohl das Modell über RAG auf externe Inhalte zugreifen kann, wird es als vorteilhaft angesehen, das Modell durch Feinabstimmung an neue Domänen anzupassen. Diese Feinabstimmung erfolgt mithilfe von Eingaben menschlicher Annotatoren oder anderer LLM-Kreationen, wobei das Modell auf zusätzliches Wissen aus der realen Welt trifft und dieses integriert

Herausgeber | Der Frage-Antwort-Datensatz (QA) von ScienceAI spielt eine entscheidende Rolle bei der Förderung der Forschung zur Verarbeitung natürlicher Sprache (NLP). Hochwertige QS-Datensätze können nicht nur zur Feinabstimmung von Modellen verwendet werden, sondern auch effektiv die Fähigkeiten großer Sprachmodelle (LLMs) bewerten, insbesondere die Fähigkeit, wissenschaftliche Erkenntnisse zu verstehen und zu begründen. Obwohl es derzeit viele wissenschaftliche QS-Datensätze aus den Bereichen Medizin, Chemie, Biologie und anderen Bereichen gibt, weisen diese Datensätze immer noch einige Mängel auf. Erstens ist das Datenformular relativ einfach, die meisten davon sind Multiple-Choice-Fragen. Sie sind leicht auszuwerten, schränken jedoch den Antwortauswahlbereich des Modells ein und können die Fähigkeit des Modells zur Beantwortung wissenschaftlicher Fragen nicht vollständig testen. Im Gegensatz dazu offene Fragen und Antworten

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

Herausgeber |. KX Im Bereich der Arzneimittelforschung und -entwicklung ist die genaue und effektive Vorhersage der Bindungsaffinität von Proteinen und Liganden für das Arzneimittelscreening und die Arzneimitteloptimierung von entscheidender Bedeutung. Aktuelle Studien berücksichtigen jedoch nicht die wichtige Rolle molekularer Oberflächeninformationen bei Protein-Ligand-Wechselwirkungen. Auf dieser Grundlage schlugen Forscher der Universität Xiamen ein neuartiges Framework zur multimodalen Merkmalsextraktion (MFE) vor, das erstmals Informationen über Proteinoberfläche, 3D-Struktur und -Sequenz kombiniert und einen Kreuzaufmerksamkeitsmechanismus verwendet, um verschiedene Modalitäten zu vergleichen Ausrichtung. Experimentelle Ergebnisse zeigen, dass diese Methode bei der Vorhersage von Protein-Ligand-Bindungsaffinitäten Spitzenleistungen erbringt. Darüber hinaus belegen Ablationsstudien die Wirksamkeit und Notwendigkeit der Proteinoberflächeninformation und der multimodalen Merkmalsausrichtung innerhalb dieses Rahmens. Verwandte Forschungen beginnen mit „S

Herausgeber | Rettichhaut Seit der Veröffentlichung des leistungsstarken AlphaFold2 im Jahr 2021 verwenden Wissenschaftler Modelle zur Proteinstrukturvorhersage, um verschiedene Proteinstrukturen innerhalb von Zellen zu kartieren, Medikamente zu entdecken und eine „kosmische Karte“ jeder bekannten Proteininteraktion zu zeichnen. Gerade hat Google DeepMind das AlphaFold3-Modell veröffentlicht, das gemeinsame Strukturvorhersagen für Komplexe wie Proteine, Nukleinsäuren, kleine Moleküle, Ionen und modifizierte Reste durchführen kann. Die Genauigkeit von AlphaFold3 wurde im Vergleich zu vielen dedizierten Tools in der Vergangenheit (Protein-Ligand-Interaktion, Protein-Nukleinsäure-Interaktion, Antikörper-Antigen-Vorhersage) deutlich verbessert. Dies zeigt, dass dies innerhalb eines einzigen einheitlichen Deep-Learning-Frameworks möglich ist
