Heim Backend-Entwicklung Python-Tutorial Erste Schritte mit Numpy: Einführung in die Berechnungsschritte von Matrix Inverse

Erste Schritte mit Numpy: Einführung in die Berechnungsschritte von Matrix Inverse

Jan 03, 2024 pm 12:02 PM
numpy 矩阵 umkehren

Erste Schritte mit Numpy: Einführung in die Berechnungsschritte von Matrix Inverse

Numpy-Erste Schritte: Einführung in die Berechnungsschritte der Matrixinverse

Übersicht:
Matrixinversion ist eine sehr wichtige Operation in der Mathematik und kann zur Lösung einiger Probleme in linearen Gleichungen und Matrixoperationen verwendet werden. In der Datenanalyse und beim maschinellen Lernen wird die Matrixinversion häufig auch für die Eigenwertanalyse, die Schätzung der kleinsten Quadrate, die Hauptkomponentenanalyse usw. verwendet. In Numpy, einer leistungsstarken numerischen Berechnungsbibliothek, ist die Berechnung der Matrixinversen sehr einfach. In diesem Artikel werden die Schritte zur Berechnung der Matrixinversen mit Numpy kurz vorgestellt und spezifische Codebeispiele bereitgestellt.

Schritt 1: Importieren Sie die Numpy-Bibliothek.
Zuerst müssen Sie die Numpy-Bibliothek importieren. Numpy ist eine der beliebtesten wissenschaftlichen Computerbibliotheken in der Python-Community und bietet effiziente Tools für die Verarbeitung mehrdimensionaler Arrays und Matrizen. Sie können den folgenden Code verwenden, um die Numpy-Bibliothek zu importieren:

import numpy as np
Nach dem Login kopieren

Schritt 2: Erstellen Sie eine Matrix
Bevor wir eine Matrix-Umkehrberechnung durchführen, müssen wir zunächst eine Matrix erstellen. In Numpy können Sie die Funktion np.array() verwenden, um ein mehrdimensionales Array zu erstellen und dann eine Matrix zu generieren. Das Folgende ist ein Beispielcode:

A = np.array([[1, 2], [3, 4]])
Nach dem Login kopieren

Dadurch wird eine 2x2-Matrix A erstellt. Sie können je nach tatsächlicher Situation Matrizen unterschiedlicher Größe erstellen.

Schritt 3: Berechnen Sie die Umkehrung der Matrix
Die Berechnung der Umkehrung der Matrix mit Numpy ist sehr einfach, rufen Sie einfach die Funktion np.linalg.inv() auf. Das Folgende ist ein Beispielcode:

A_inv = np.linalg.inv(A)
Nach dem Login kopieren

Auf diese Weise erhalten wir die inverse Matrix A_inv von Matrix A.

Schritt 4: Überprüfen Sie das Ergebnis
Um zu überprüfen, ob das Berechnungsergebnis korrekt ist, können wir die ursprüngliche Matrix A und die inverse Matrix A_inv multiplizieren, um eine Identitätsmatrix I zu erhalten. In Numpy können Sie die Funktion np.dot() verwenden, um eine Matrixmultiplikation durchzuführen. Hier ist ein Beispielcode:

I = np.dot(A, A_inv)
Nach dem Login kopieren

Bei korrekter Berechnung sollte die Matrix I einer Identitätsmatrix nahe kommen.

Vollständiges Codebeispiel:

import numpy as np

# Step 1: 导入Numpy库
import numpy as np

# Step 2: 构造矩阵
A = np.array([[1, 2], [3, 4]])

# Step 3: 计算矩阵的逆
A_inv = np.linalg.inv(A)

# Step 4: 检验结果
I = np.dot(A, A_inv)

print("原始矩阵 A:")
print(A)
print("逆矩阵 A_inv:")
print(A_inv)
print("矩阵相乘结果 I:")
print(I)
Nach dem Login kopieren

Das Ausführen des obigen Codes gibt die folgenden Ergebnisse aus:

原始矩阵 A:
[[1 2]
 [3 4]]
逆矩阵 A_inv:
[[-2.   1. ]
 [ 1.5 -0.5]]
矩阵相乘结果 I:
[[1.  0. ]
 [0.  1. ]]
Nach dem Login kopieren

Wie Sie sehen können, wird die inverse Matrix von Matrix A korrekt berechnet und das Ergebnis der Matrixmultiplikation liegt nahe an der Identitätsmatrix.

Fazit:
In diesem Artikel werden die Schritte zur Berechnung der Matrixinversen mit Numpy vorgestellt und spezifische Codebeispiele bereitgestellt. Wir hoffen, dass die Leser durch die Einführung dieses Artikels die Methode der Matrixinversberechnung in Numpy beherrschen und sie flexibel auf tatsächliche numerische Berechnungen und Datenanalysen anwenden können.

Das obige ist der detaillierte Inhalt vonErste Schritte mit Numpy: Einführung in die Berechnungsschritte von Matrix Inverse. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. Crossplay haben?
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

So aktualisieren Sie die Numpy-Version So aktualisieren Sie die Numpy-Version Nov 28, 2023 pm 05:50 PM

So aktualisieren Sie die Numpy-Version: 1. Verwenden Sie den Befehl „pip install --upgrade numpy“. 2. Wenn Sie die Python 3.x-Version verwenden, verwenden Sie den Befehl „pip3 install --upgrade numpy“, der heruntergeladen wird Installieren Sie es und überschreiben Sie die aktuelle NumPy-Version 3. Wenn Sie Conda zum Verwalten der Python-Umgebung verwenden, verwenden Sie zum Aktualisieren den Befehl „conda install --update numpy“.

So überprüfen Sie schnell die Numpy-Version So überprüfen Sie schnell die Numpy-Version Jan 19, 2024 am 08:23 AM

Numpy ist eine wichtige Mathematikbibliothek in Python. Sie bietet effiziente Array-Operationen und wissenschaftliche Berechnungsfunktionen und wird häufig in den Bereichen Datenanalyse, maschinelles Lernen, Deep Learning und anderen Bereichen verwendet. Bei der Verwendung von Numpy müssen wir häufig die Versionsnummer von Numpy überprüfen, um die von der aktuellen Umgebung unterstützten Funktionen zu ermitteln. In diesem Artikel erfahren Sie, wie Sie die Numpy-Version schnell überprüfen und spezifische Codebeispiele bereitstellen. Methode 1: Verwenden Sie das __version__-Attribut, das mit numpy geliefert wird. Das numpy-Modul wird mit einem __ geliefert.

Welche Numpy-Version wird empfohlen? Welche Numpy-Version wird empfohlen? Nov 22, 2023 pm 04:58 PM

Es wird empfohlen, die neueste Version von NumPy1.21.2 zu verwenden. Der Grund ist: Derzeit ist die neueste stabile Version von NumPy 1.21.2. Im Allgemeinen wird empfohlen, die neueste Version von NumPy zu verwenden, da diese die neuesten Funktionen und Leistungsoptimierungen enthält und einige Probleme und Fehler in früheren Versionen behebt.

Numpy-Version aktualisieren: eine detaillierte und leicht verständliche Anleitung Numpy-Version aktualisieren: eine detaillierte und leicht verständliche Anleitung Feb 25, 2024 pm 11:39 PM

So aktualisieren Sie die Numpy-Version: Leicht verständliches Tutorial, erfordert konkrete Codebeispiele. Einführung: NumPy ist eine wichtige Python-Bibliothek für wissenschaftliche Berechnungen. Es bietet ein leistungsstarkes mehrdimensionales Array-Objekt und eine Reihe verwandter Funktionen, mit denen effiziente numerische Operationen ausgeführt werden können. Mit der Veröffentlichung neuer Versionen stehen uns ständig neuere Funktionen und Fehlerbehebungen zur Verfügung. In diesem Artikel wird beschrieben, wie Sie Ihre installierte NumPy-Bibliothek aktualisieren, um die neuesten Funktionen zu erhalten und bekannte Probleme zu beheben. Schritt 1: Überprüfen Sie zu Beginn die aktuelle NumPy-Version

Schritt-für-Schritt-Anleitung zur Installation von NumPy in PyCharm und zur optimalen Nutzung seiner Funktionen Schritt-für-Schritt-Anleitung zur Installation von NumPy in PyCharm und zur optimalen Nutzung seiner Funktionen Feb 18, 2024 pm 06:38 PM

Bringen Sie Ihnen Schritt für Schritt bei, NumPy in PyCharm zu installieren und seine leistungsstarken Funktionen vollständig zu nutzen. Vorwort: NumPy ist eine der grundlegenden Bibliotheken für wissenschaftliches Rechnen in Python. Sie bietet leistungsstarke mehrdimensionale Array-Objekte und verschiedene für die Ausführung erforderliche Funktionen Grundlegende Operationen an Arrays. Es ist ein wichtiger Bestandteil der meisten Data-Science- und Machine-Learning-Projekte. In diesem Artikel erfahren Sie, wie Sie NumPy in PyCharm installieren und seine leistungsstarken Funktionen anhand spezifischer Codebeispiele demonstrieren. Schritt 1: Installieren Sie zunächst PyCharm

So installieren Sie Numpy So installieren Sie Numpy Dec 01, 2023 pm 02:16 PM

Numpy kann mit Pip, Conda, Quellcode und Anaconda installiert werden. Detaillierte Einführung: 1. pip, geben Sie pip install numpy in die Befehlszeile ein; 2. conda, geben Sie conda install numpy in die Befehlszeile ein. 3. Quellcode, entpacken Sie das Quellcodepaket oder geben Sie das Quellcodeverzeichnis ein, geben Sie den Befehl ein Zeile python setup.py build python setup.py install.

Leitfaden zur Auswahl der Numpy-Version: Warum ein Upgrade? Leitfaden zur Auswahl der Numpy-Version: Warum ein Upgrade? Jan 19, 2024 am 09:34 AM

Mit der rasanten Entwicklung von Bereichen wie Datenwissenschaft, maschinellem Lernen und Deep Learning hat sich Python zu einer Mainstream-Sprache für die Datenanalyse und -modellierung entwickelt. In Python ist NumPy (kurz für NumericalPython) eine sehr wichtige Bibliothek, da sie eine Reihe effizienter mehrdimensionaler Array-Objekte bereitstellt und die Grundlage für viele andere Bibliotheken wie Pandas, SciPy und Scikit-Learn bildet. Bei der Verwendung von NumPy werden Sie daher wahrscheinlich auf Kompatibilitätsprobleme zwischen verschiedenen Versionen stoßen

Entdecken Sie die geheime Methode zur schnellen Deinstallation der NumPy-Bibliothek Entdecken Sie die geheime Methode zur schnellen Deinstallation der NumPy-Bibliothek Jan 26, 2024 am 08:32 AM

Das Geheimnis der schnellen Deinstallation der NumPy-Bibliothek wird gelüftet. Es sind spezifische Codebeispiele erforderlich. NumPy ist eine leistungsstarke Python-Bibliothek für wissenschaftliches Rechnen, die in Bereichen wie Datenanalyse, wissenschaftlichem Rechnen und maschinellem Lernen weit verbreitet ist. Manchmal müssen wir jedoch möglicherweise die NumPy-Bibliothek deinstallieren, sei es zur Aktualisierung der Version oder aus anderen Gründen. In diesem Artikel werden einige Methoden zum schnellen Deinstallieren der NumPy-Bibliothek vorgestellt und spezifische Codebeispiele bereitgestellt. Methode 1: Verwenden Sie pip zum Deinstallieren. Pip ist ein Python-Paketverwaltungstool, das zum Installieren, Aktualisieren und Installieren verwendet werden kann

See all articles