Eingehende Analyse der Funktionen und Verwendungen von NumPy-Funktionen
NumPy (Numerical Python) ist eine Open-Source-Python-Bibliothek für wissenschaftliches Rechnen. Es ermöglicht die effiziente Bearbeitung von Arrays und verfügt über viele praktische mathematische Funktionen und Werkzeuge. Dieser Artikel bietet eine detaillierte Analyse der Funktionen und Verwendungen einiger gängiger Funktionen in NumPy und stellt spezifische Codebeispiele bereit.
NumPy bietet eine Vielzahl von Methoden zum Erstellen von Arrays. Dazu gehört die Verwendung der array
函数、arange
函数和zeros
-Funktion usw. Hier sind einige Beispiele für die Erstellung von Arrays:
import numpy as np # 使用array函数,将列表转换为数组 arr1 = np.array([1, 2, 3, 4, 5]) print(arr1) # 使用arange函数,创建一个从0到9的数组 arr2 = np.arange(10) print(arr2) # 使用zeros函数,创建一个元素全为0的3x3数组 arr3 = np.zeros((3, 3)) print(arr3)
NumPy bietet viele Funktionen für Operationen zwischen Arrays. Zu diesen Funktionen gehören Addition, Subtraktion, Multiplikation, Division usw. Hier sind einige Beispiele für Array-Operationen:
import numpy as np # 加法 arr1 = np.array([1, 2, 3]) arr2 = np.array([4, 5, 6]) print(arr1 + arr2) # 减法 arr3 = np.array([7, 8, 9]) print(arr2 - arr3) # 乘法 print(arr1 * arr2) # 除法 print(arr2 / arr3)
NumPy bietet einen umfangreichen Satz statistischer Funktionen zur Berechnung verschiedener statistischer Indikatoren von Arrays. Zu diesen Funktionen gehören Summe, Mittelwert, Standardabweichung, Maximum usw. Hier sind einige Beispiele für statistische Funktionen:
import numpy as np arr = np.array([1, 2, 3, 4, 5]) # 求和 print(np.sum(arr)) # 平均值 print(np.mean(arr)) # 标准差 print(np.std(arr)) # 最大值 print(np.max(arr))
NumPy ermöglicht Slicing-Operationen an Arrays, um Teile oder Teilmengen des Arrays zu erhalten. Bei Slicing-Vorgängen wird ein Doppelpunkt (:) verwendet, um einen Bereich anzugeben. Hier sind einige Beispiele für Array-Slicing:
import numpy as np arr = np.array([1, 2, 3, 4, 5]) # 获取数组的前三个元素 print(arr[:3]) # 获取数组的第三个到最后一个元素 print(arr[2:]) # 获取数组的第二个和第四个元素 print(arr[1:4:2])
NumPy kann mehrdimensionale Arrays erstellen und bearbeiten. Mehrdimensionale Arrays können zweidimensional, dreidimensional oder sogar höherdimensional sein. Hier sind einige Beispiele für mehrdimensionale Array-Operationen:
import numpy as np # 创建一个3x3的二维数组 arr1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print(arr1) # 计算二维数组的行和列的和 print(np.sum(arr1, axis=0)) # 列和 print(np.sum(arr1, axis=1)) # 行和 # 创建一个3x3x3的三维数组 arr2 = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9]], [[10, 11, 12], [13, 14, 15], [16, 17, 18]], [[19, 20, 21], [22, 23, 24], [25, 26, 27]]]) print(arr2) # 获取三维数组的第一个二维数组 print(arr2[0])
Zusammenfassend bietet NumPy umfangreiche Funktionen und Werkzeuge für den Umgang mit Arrays sowie viele praktische mathematische Funktionen und Operationen. Durch die Beherrschung der Verwendung dieser Funktionen können die Effizienz und der Komfort der Array-Verarbeitung erheblich verbessert werden. Das Obige ist nur ein kleiner Teil der Funktionen und Verwendungsmöglichkeiten in NumPy. Ich hoffe, dass es für das Lernen und Üben der Leser hilfreich sein wird.
Das obige ist der detaillierte Inhalt vonEingehende Analyse der Funktionen und Anwendungen von Numpy-Funktionen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!