Parameter der Vlookup-Funktion und Erklärung ihrer Bedeutung
Wir müssen bei der Verwendung von Excel die Vlookup-Funktion verwendet haben. Es gibt also mehrere solcher Funktionen und wie man jede Funktion konkret verwendet. Soweit dem Editor bekannt ist, gibt es vier Vlookup-Funktionen, nämlich Lookup_value, Table_array, col_index_num und Range_lookup. Lassen Sie mich Ihnen ihre spezifische Verwendung erläutern ~
Die Vlookup-Funktion hat mehrere Parameter und die Bedeutung jedes Parameters
Zu den Parametern der Vlookup-Funktion gehören Lookup_value, Table_array, col_index_num und Range_lookup, insgesamt 4.
1. Lookup_value ist der Wert, der in der ersten Spalte der Datentabelle nachgeschlagen werden muss.
Lookup_value kann ein numerischer Wert, eine Referenz oder eine Textzeichenfolge sein. Wenn der erste Parameter der vlookup-Funktion den Suchwert weglässt, bedeutet dies, dass mit 0 gesucht wird.
2. Table_array ist die Datentabelle, in der Daten gefunden werden müssen. Verwenden Sie einen Verweis auf eine Zone oder einen Zonennamen.
3. col_index_num ist die Datenspaltennummer, die für die Suche nach Daten in table_array verwendet wird.
4. Range_lookup ist ein logischer Wert, der angibt, ob die Funktion VLOOKUP bei der Suche eine genaue Übereinstimmung oder eine ungefähre Übereinstimmung darstellt.
Wenn FALSE oder 0, wird eine genaue Übereinstimmung zurückgegeben. Wenn keine Übereinstimmung gefunden wird, wird ein Fehlerwert #N/A zurückgegeben.
Syntax der VLOOKUP-Funktion
1 Es gibt vier Parameter in Klammern, die erforderlich sind.
Der letzte Parameter „range_lookup“ ist ein logischer Wert. Wir geben oft ein 0-Wort oder „False“ ein. Tatsächlich können wir auch ein 1-Wort oder „true“ eingeben.
Ersteres bedeutet eine vollständige Suche, und wenn er nicht gefunden werden kann, wird der Fehlerwert #N/A zurückgegeben; letzteres sucht zuerst nach genau demselben Wert.
Wenn er nicht gefunden werden kann, wird dann nach einem sehr gesucht Close-Wert, und wenn er nicht gefunden werden kann, muss er den Fehlerwert #N/A zurückgeben.
2. Lookup_value ist ein sehr wichtiger Parameter. Es kann ein numerischer Wert, eine Textzeichenfolge oder eine Referenzadresse sein. Was wir häufig verwenden, ist die Referenzadresse.
Der Zellformattyp der Referenzadresse muss mit dem Zellformattyp der Suche übereinstimmen. Andernfalls werden Sie manchmal deutlich erkennen, dass Daten vorhanden sind, diese jedoch nicht erfassen können.
Das obige ist der detaillierte Inhalt vonParameter der Vlookup-Funktion und Erklärung ihrer Bedeutung. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Neue Funktion der PHP5.4-Version: So verwenden Sie aufrufbare Typhinweisparameter, um aufrufbare Funktionen oder Methoden zu akzeptieren. Einführung: Die PHP5.4-Version führt eine sehr praktische neue Funktion ein: Sie können aufrufbare Typhinweisparameter verwenden, um aufrufbare Funktionen oder Methoden zu akzeptieren. Mit dieser neuen Funktion können Funktionen und Methoden entsprechende aufrufbare Argumente ohne zusätzliche Prüfungen und Konvertierungen direkt angeben. In diesem Artikel stellen wir die Verwendung von aufrufbaren Typhinweisen vor und stellen einige Codebeispiele bereit.

Produktparameter beziehen sich auf die Bedeutung von Produktattributen. Zu den Bekleidungsparametern gehören beispielsweise Marke, Material, Modell, Größe, Stil, Stoff, anwendbare Gruppe, Farbe usw.; zu den Lebensmittelparametern gehören Marke, Gewicht, Material, Gesundheitslizenznummer, anwendbare Gruppe, Farbe usw.; Dazu gehören Marke, Größe, Farbe, Herkunftsort, anwendbare Spannung, Signal, Schnittstelle und Leistung usw.

Der i9-12900H ist ein 14-Kern-Prozessor und die Threads sind ebenfalls sehr hoch. Einige Parameter wurden verbessert und können den Benutzern ein hervorragendes Erlebnis bieten . Überprüfung der Parameterbewertung des i9-12900H: 1. Der i9-12900H ist ein 14-Kern-Prozessor, der die q1-Architektur und die 24576-KB-Prozesstechnologie übernimmt und auf 20 Threads aktualisiert wurde. 2. Die maximale CPU-Frequenz beträgt 1,80! 5,00 GHz, was hauptsächlich von der Arbeitslast abhängt. 3. Im Vergleich zum Preis ist es sehr gut geeignet. Das Preis-Leistungs-Verhältnis ist sehr gut und für einige Partner, die eine normale Nutzung benötigen, sehr gut geeignet. i9-12900H Parameterbewertung und Leistungsbenchmarks

Die Sicherheitsüberprüfung von C++-Parametertypen stellt durch Überprüfungen zur Kompilierungszeit, Laufzeitüberprüfungen und statischen Behauptungen sicher, dass Funktionen nur Werte erwarteter Typen akzeptieren, wodurch unerwartetes Verhalten und Programmabstürze verhindert werden: Typüberprüfung zur Kompilierungszeit: Der Compiler überprüft die Typkompatibilität. Überprüfung des Laufzeittyps: Verwenden Sie Dynamic_cast, um die Typkompatibilität zu überprüfen und eine Ausnahme auszulösen, wenn keine Übereinstimmung vorliegt. Statische Behauptung: Typbedingungen zur Kompilierzeit geltend machen.

Während des Entwicklungsprozesses kann es vorkommen, dass wir auf die folgende Fehlermeldung stoßen: PHPWarning: in_array()expectsparameter. Diese Fehlermeldung wird bei Verwendung der Funktion in_array() angezeigt. Sie kann durch eine falsche Parameterübergabe der Funktion verursacht werden. Werfen wir einen Blick auf die Lösung dieser Fehlermeldung. Zunächst müssen Sie die Rolle der Funktion in_array() klären: Überprüfen Sie, ob ein Wert im Array vorhanden ist. Der Prototyp dieser Funktion ist: in_a

Hyperbelfunktionen werden mithilfe von Hyperbeln anstelle von Kreisen definiert und entsprechen gewöhnlichen trigonometrischen Funktionen. Es gibt den Verhältnisparameter in der hyperbolischen Sinusfunktion aus dem angegebenen Winkel im Bogenmaß zurück. Aber machen Sie das Gegenteil, oder anders gesagt. Wenn wir einen Winkel aus einem hyperbolischen Sinus berechnen wollen, benötigen wir eine umgekehrte hyperbolische trigonometrische Operation wie die hyperbolische Umkehrsinusoperation. In diesem Kurs wird gezeigt, wie Sie die hyperbolische Umkehrsinusfunktion (asinh) in C++ verwenden, um Winkel mithilfe des hyperbolischen Sinuswerts im Bogenmaß zu berechnen. Die hyperbolische Arkussinusoperation folgt der folgenden Formel -$$\mathrm{sinh^{-1}x\:=\:In(x\:+\:\sqrt{x^2\:+\:1})}, Wo\:In\:ist\:natürlicher Logarithmus\:(log_e\:k)

Obwohl große Sprachmodelle (LLM) eine starke Leistung aufweisen, kann die Anzahl der Parameter leicht Hunderte oder Hunderte von Milliarden erreichen, und der Bedarf an Computerausrüstung und Speicher ist so groß, dass sich normale Unternehmen diese nicht leisten können. Bei der Quantisierung handelt es sich um eine gängige Komprimierungsoperation, die einen Teil der Modellleistung im Austausch für eine schnellere Inferenzgeschwindigkeit und einen geringeren Speicherbedarf opfert, indem die Genauigkeit der Modellgewichte (z. B. 32 Bit auf 8 Bit) verringert wird. Bei LLMs mit mehr als 100 Milliarden Parametern können die vorhandenen Komprimierungsmethoden jedoch weder die Genauigkeit des Modells aufrechterhalten, noch können sie effizient auf der Hardware ausgeführt werden. Kürzlich haben Forscher vom MIT und NVIDIA gemeinsam eine universelle Post-Training-Quantisierung (GPQ) vorgeschlagen.

Eine wichtige Aufgabe im ML ist die Modellauswahl oder die Verwendung von Daten, um das beste Modell oder die besten Parameter für eine bestimmte Aufgabe zu finden. Man nennt das auch Tuning. Sie können einen einzelnen Schätzer wie LogisticRegression oder eine gesamte Pipeline optimieren, die mehrere Algorithmen, Charakterisierungen und andere Schritte umfasst. Benutzer können die gesamte Pipeline auf einmal optimieren, anstatt jedes Element in der Pipeline einzeln zu optimieren. Eine wichtige Aufgabe im ML ist die Modellauswahl oder die Verwendung von Daten, um das beste Modell oder die besten Parameter für eine bestimmte Aufgabe zu finden. Man nennt das auch Tuning. Ein einzelner Schätzer (z. B. LogisticRegression) kann optimiert werden, oder
