Heim Backend-Entwicklung Python-Tutorial Datenverarbeitungsfähigkeiten von Pandas: Einfache Methode zum Ändern von Spaltennamen

Datenverarbeitungsfähigkeiten von Pandas: Einfache Methode zum Ändern von Spaltennamen

Jan 10, 2024 am 08:15 AM
数据处理 pandas Änderung des Spaltennamens

Datenverarbeitungsfähigkeiten von Pandas: Einfache Methode zum Ändern von Spaltennamen

Pandas-Datenverarbeitungstipps: Eine einfache Möglichkeit, Spaltennamen zu ändern

Während des Datenverarbeitungsprozesses müssen wir manchmal die Spaltennamen im DataFrame ändern, um die Bedeutung der Daten besser widerzuspiegeln oder bestimmte Anforderungen zu erfüllen. Pandas bietet einfache und benutzerfreundliche Methoden zum Ändern von Spaltennamen. In diesem Artikel werden mehrere gängige Methoden vorgestellt und spezifische Codebeispiele bereitgestellt.

Methode 1: Verwenden Sie die Funktion rename() rename()函数

rename()函数可以通过提供一个字典或函数来更改列名。下面是一个使用字典的示例:

import pandas as pd

# 创建一个示例DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie'],
        'Age': [25, 30, 35],
        'Score': [90, 80, 95]}
df = pd.DataFrame(data)

# 使用rename函数修改列名
df.rename(columns={'Name': '姓名', 'Age': '年龄', 'Score': '分数'}, inplace=True)
print(df)
Nach dem Login kopieren

运行结果如下:

        姓名  年龄  分数
0    Alice  25  90
1      Bob  30  80
2  Charlie  35  95
Nach dem Login kopieren
Nach dem Login kopieren
Nach dem Login kopieren

方法二:直接修改columns属性

我们也可以直接修改DataFrame的columns属性来更改列名。下面是一个示例代码:

import pandas as pd

# 创建一个示例DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie'],
        'Age': [25, 30, 35],
        'Score': [90, 80, 95]}
df = pd.DataFrame(data)

# 直接修改columns属性
df.columns = ['姓名', '年龄', '分数']
print(df)
Nach dem Login kopieren

运行结果与前面的示例一样:

        姓名  年龄  分数
0    Alice  25  90
1      Bob  30  80
2  Charlie  35  95
Nach dem Login kopieren
Nach dem Login kopieren
Nach dem Login kopieren

方法三:使用set_axis()方法

set_axis()方法可以一次性修改多个列名。下面是一个示例代码:

import pandas as pd

# 创建一个示例DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie'],
        'Age': [25, 30, 35],
        'Score': [90, 80, 95]}
df = pd.DataFrame(data)

# 使用set_axis方法修改列名
df.set_axis(['姓名', '年龄', '分数'], axis='columns', inplace=True)
print(df)
Nach dem Login kopieren

结果与前面的示例相同:

        姓名  年龄  分数
0    Alice  25  90
1      Bob  30  80
2  Charlie  35  95
Nach dem Login kopieren
Nach dem Login kopieren
Nach dem Login kopieren

总结:

通过以上的例子,我们可以看到修改DataFrame列名的几种方法。根据实际需求选择相应的方法进行修改。rename()函数适用于有多个不同的列名需要修改的情况,可以通过字典或函数来指定需要修改的列名。直接修改columns属性是一个简单直观的方法,适用于只有几个列名需要修改的情况。set_axis()

Die Funktion rename() kann Spaltennamen ändern, indem Sie ein Wörterbuch oder eine Funktion bereitstellen. Das Folgende ist ein Beispiel für die Verwendung eines Wörterbuchs:

rrreee

Die laufenden Ergebnisse lauten wie folgt: 🎜rrreee🎜Methode 2: Das Attribut columns direkt ändern🎜🎜Wir können die columns auch direkt ändern -Attribut des DataFrame, um Spaltennamen zu ändern. Das Folgende ist ein Beispielcode: 🎜rrreee🎜Das laufende Ergebnis ist das gleiche wie im vorherigen Beispiel: 🎜rrreee🎜Methode drei: Verwenden Sie die Methode set_axis()🎜🎜Der set_axis()-Methode kann einmal verwendet werden. Ändern Sie mehrere Spaltennamen. Hier ist ein Beispielcode: 🎜rrreee🎜Das Ergebnis ist das gleiche wie im vorherigen Beispiel: 🎜rrreee🎜Zusammenfassung: 🎜🎜Anhand der obigen Beispiele können wir verschiedene Möglichkeiten sehen, die DataFrame-Spaltennamen zu ändern. Wählen Sie die entsprechende Methode aus, um sie entsprechend den tatsächlichen Anforderungen zu ändern. Die Funktion <code>rename() eignet sich für Situationen, in denen mehrere unterschiedliche Spaltennamen geändert werden müssen. Die zu ändernden Spaltennamen können über ein Wörterbuch oder eine Funktion angegeben werden. Das direkte Ändern des Attributs columns ist eine einfache und intuitive Methode, die sich für Situationen eignet, in denen nur wenige Spaltennamen geändert werden müssen. Die Methode set_axis() eignet sich zum gleichzeitigen Ändern mehrerer Spaltennamen. 🎜🎜Ich hoffe, dass die obige Einführung den Lesern helfen kann, die Methode zum einfachen Ändern von Spaltennamen in Pandas zu erlernen. Je nach Situation können unterschiedliche Methoden ausgewählt und verwendet werden, und durch den flexiblen Einsatz dieser Methoden können sie sich besser an die Anforderungen der Datenverarbeitung anpassen. 🎜

Das obige ist der detaillierte Inhalt vonDatenverarbeitungsfähigkeiten von Pandas: Einfache Methode zum Ändern von Spaltennamen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat -Befehle und wie man sie benutzt
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Lösung häufiger Pandas-Installationsprobleme: Interpretation und Lösungen für Installationsfehler Lösung häufiger Pandas-Installationsprobleme: Interpretation und Lösungen für Installationsfehler Feb 19, 2024 am 09:19 AM

Pandas-Installations-Tutorial: Analyse häufiger Installationsfehler und ihrer Lösungen. Es sind spezifische Codebeispiele erforderlich. Einführung: Pandas ist ein leistungsstarkes Datenanalysetool, das in der Datenbereinigung, Datenverarbeitung und Datenvisualisierung weit verbreitet ist und daher in der Branche hohes Ansehen genießt der Datenwissenschaft. Aufgrund von Umgebungskonfigurations- und Abhängigkeitsproblemen können jedoch bei der Installation von Pandas einige Schwierigkeiten und Fehler auftreten. In diesem Artikel erhalten Sie ein Pandas-Installations-Tutorial und analysieren einige häufige Installationsfehler und deren Lösungen. 1. Pandas installieren

So lesen Sie eine TXT-Datei mit Pandas richtig So lesen Sie eine TXT-Datei mit Pandas richtig Jan 19, 2024 am 08:39 AM

Um Pandas zum korrekten Lesen von TXT-Dateien zu verwenden, sind bestimmte Codebeispiele erforderlich. Pandas ist eine weit verbreitete Python-Datenanalysebibliothek. Sie kann zur Verarbeitung einer Vielzahl von Datentypen verwendet werden, einschließlich CSV-Dateien, Excel-Dateien, SQL-Datenbanken usw. Gleichzeitig können damit auch Textdateien, beispielsweise TXT-Dateien, gelesen werden. Beim Lesen von TXT-Dateien treten jedoch manchmal Probleme auf, z. B. Codierungsprobleme, Trennzeichenprobleme usw. In diesem Artikel erfahren Sie, wie Sie TXT mit Pandas richtig lesen

Praktische Tipps zum Lesen von TXT-Dateien mit Pandas Praktische Tipps zum Lesen von TXT-Dateien mit Pandas Jan 19, 2024 am 09:49 AM

Praktische Tipps zum Lesen von TXT-Dateien mit Pandas. In der Datenanalyse und Datenverarbeitung sind TXT-Dateien ein gängiges Datenformat. Die Verwendung von Pandas zum Lesen von TXT-Dateien ermöglicht eine schnelle und bequeme Datenverarbeitung. In diesem Artikel werden verschiedene praktische Techniken vorgestellt, die Ihnen dabei helfen, Pandas besser zum Lesen von TXT-Dateien zu verwenden, sowie spezifische Codebeispiele. TXT-Dateien mit Trennzeichen lesen Wenn Sie Pandas zum Lesen von TXT-Dateien mit Trennzeichen verwenden, können Sie read_c verwenden

Vorstellung der effizienten Datendeduplizierungsmethode in Pandas: Tipps zum schnellen Entfernen doppelter Daten Vorstellung der effizienten Datendeduplizierungsmethode in Pandas: Tipps zum schnellen Entfernen doppelter Daten Jan 24, 2024 am 08:12 AM

Das Geheimnis der Pandas-Deduplizierungsmethode: eine schnelle und effiziente Methode zur Datendeduplizierung, die spezifische Codebeispiele erfordert. Bei der Datenanalyse und -verarbeitung kommt es häufig zu Duplikaten in den Daten. Doppelte Daten können die Analyseergebnisse verfälschen, daher ist die Deduplizierung ein sehr wichtiger Schritt. Pandas, eine leistungsstarke Datenverarbeitungsbibliothek, bietet eine Vielzahl von Methoden zur Datendeduplizierung. In diesem Artikel werden einige häufig verwendete Deduplizierungsmethoden vorgestellt und spezifische Codebeispiele angehängt. Der häufigste Fall der Deduplizierung basierend auf einer einzelnen Spalte basiert darauf, ob der Wert einer bestimmten Spalte dupliziert wird.

Tutorial zur Pandas-Nutzung: Schnellstart zum Lesen von JSON-Dateien Tutorial zur Pandas-Nutzung: Schnellstart zum Lesen von JSON-Dateien Jan 13, 2024 am 10:15 AM

Schnellstart: Pandas-Methode zum Lesen von JSON-Dateien, spezifische Codebeispiele sind erforderlich. Einführung: Im Bereich Datenanalyse und Datenwissenschaft ist Pandas eine der wichtigsten Python-Bibliotheken. Es bietet umfangreiche Funktionen und flexible Datenstrukturen und kann verschiedene Daten problemlos verarbeiten und analysieren. In praktischen Anwendungen stoßen wir häufig auf Situationen, in denen wir JSON-Dateien lesen müssen. In diesem Artikel wird erläutert, wie Sie mit Pandas JSON-Dateien lesen und spezifische Codebeispiele anhängen. 1. Installation von Pandas

Einfaches Pandas-Installations-Tutorial: Detaillierte Anleitung zur Installation von Pandas auf verschiedenen Betriebssystemen Einfaches Pandas-Installations-Tutorial: Detaillierte Anleitung zur Installation von Pandas auf verschiedenen Betriebssystemen Feb 21, 2024 pm 06:00 PM

Einfaches Pandas-Installations-Tutorial: Detaillierte Anleitung zur Installation von Pandas auf verschiedenen Betriebssystemen, spezifische Codebeispiele sind erforderlich. Da die Nachfrage nach Datenverarbeitung und -analyse weiter steigt, ist Pandas für viele Datenwissenschaftler und -analysten zu einem der bevorzugten Tools geworden. Pandas ist eine leistungsstarke Datenverarbeitungs- und Analysebibliothek, die große Mengen strukturierter Daten problemlos verarbeiten und analysieren kann. In diesem Artikel wird detailliert beschrieben, wie Pandas auf verschiedenen Betriebssystemen installiert werden, und es werden spezifische Codebeispiele bereitgestellt. Auf dem Windows-Betriebssystem installieren

FAQ für Pandas, die TXT-Dateien lesen FAQ für Pandas, die TXT-Dateien lesen Jan 19, 2024 am 09:19 AM

Pandas ist ein Datenanalysetool für Python, das sich besonders zum Bereinigen, Verarbeiten und Analysieren von Daten eignet. Während des Datenanalyseprozesses müssen wir häufig Datendateien in verschiedenen Formaten lesen, beispielsweise TXT-Dateien. Während des spezifischen Vorgangs können jedoch einige Probleme auftreten. In diesem Artikel werden Antworten auf häufige Fragen zum Lesen von TXT-Dateien mit Pandas gegeben und entsprechende Codebeispiele bereitgestellt. Frage 1: Wie lese ich eine TXT-Datei? TXT-Dateien können mit der Funktion read_csv() von Pandas gelesen werden. Das ist weil

Wie verbessert Golang die Effizienz der Datenverarbeitung? Wie verbessert Golang die Effizienz der Datenverarbeitung? May 08, 2024 pm 06:03 PM

Golang verbessert die Effizienz der Datenverarbeitung durch Parallelität, effiziente Speicherverwaltung, native Datenstrukturen und umfangreiche Bibliotheken von Drittanbietern. Zu den spezifischen Vorteilen gehören: Parallelverarbeitung: Coroutinen unterstützen die Ausführung mehrerer Aufgaben gleichzeitig. Effiziente Speicherverwaltung: Der Garbage-Collection-Mechanismus verwaltet den Speicher automatisch. Effiziente Datenstrukturen: Datenstrukturen wie Slices, Karten und Kanäle greifen schnell auf Daten zu und verarbeiten sie. Bibliotheken von Drittanbietern: Abdeckung verschiedener Datenverarbeitungsbibliotheken wie fasthttp und x/text.

See all articles