Inhaltsverzeichnis
1.heisenberg总体架构
2.heisenberg开发
mysql数据源
Shard结点配置
Schema配置
rule.xml 
分表规则配置
表初始化
Heim Datenbank MySQL-Tutorial 分享下去年底写的mysql分库分表中间件heisenberg_MySQL

分享下去年底写的mysql分库分表中间件heisenberg_MySQL

Jun 01, 2016 pm 01:10 PM

目前维护在github上了,googlecode稳定性太差

https://github.com/brucexx/heisenberg

其优点: 分库分表与应用脱离,分库表如同使用单库表一样
减少db 连接数压力 
热重启配置
可水平扩容
遵守Mysql原生协议
无语言限制,mysqlclient,c,java等都可以使用
Heisenberg服务器通过管理命令可以查看,如连接数,线程池,结点等,并可以调整
采用velocity的分库分表脚本进行自定义分库表,相当的灵活

 

之前在组里有做过简单的分享,这段时间稍微轻松了点,先分享出来,看有没有更好的idea在这块有所提升

 

 下面开始介绍heisenberg

 

1.heisenberg总体架构

      首先这块架构:

      

      

 

应用对于heisenberg集群来说就是mysql客户端,

而heisenberg也是集成了mysql的原生协议,所以对于应用来说,就相当于单库单表的数据源

无论是mysql客户端,c,jdbc驱动等都可以访问heisenberg服务器,由服务器把分库分表的工作给做掉了

 

访问heisenberg集群可以通过像lvs,F5等负载软件/设备解决,

其实一台heisenberg的性能是相当的赞了,我压力到2320TPS load 都还只有0.1-0.3左右(CPU 8core,16G),由于找不到mysql物理机器了,只得做罢

 

服务端内部结构:


 

其中FrontConnectionFactory为面向应用的连接管理,ManagerConnectionFactory为面向heisenberg服务器内部管理的一些连接管理,比如更改配置后热重启,关闭 某个连接等功能

mysql协议贯穿于应用程序与mysql服务器,最终解析为相关的mysql数据包, 授权包,注册包等

 

当heisenberg服务器接收到SQL语句后,通过AST语法解析 解析成 DML,DCL,DDL类型以及相关列名的值等等,然后通过ServerRouter这一层,经过分库分表的切分,最终将切分好的语句放入对应数据结点进行执行

 

分库分表的切分,为了满足各种通用性灵活性,使用了velocity和groovy 2种语法来支持,其中groovy是初始化表和库和映射关系的,只在加载时初始化一次;而velocity是用来渲染对应的分库和分表规则的。

 

OK,知道了原理,那么开始说明如何使用分库分表吧

 

2.heisenberg开发

Maven +JDK 部署好

代码从 https://github.com/brucexx/heisenberg

 

下载到本地后,

Mvn package 之

 

在本地target里会生成一个heisenberg-server-1.0.0.zip 文件

 

解压之 unzip  heisenberg-server-1.0.0.zip  

进入conf目录

有下面几个目录 

     conf

      ---log4j.xml

      ---rule.xml

      ---schema.xml

      ---server.xml

log4j.xml就不介绍了

  sql_route.log就是分库表切分的时间

  sql_execute.log 为sql总执行时间

 

server.xml 

    "serverPort">8166

    "managerPort">8266

    "initExecutor">16

    "timerExecutor">4

    "managerExecutor">4

    "processors">4

    "processorHandler">8

    "processorExecutor">8

    "clusterHeartbeatUser">_HEARTBEAT_USER_

    "clusterHeartbeatPass">_HEARTBEAT_PASS_

 

 

serverPort为服务端口,即对上层应用的端口

managerPort为管理端口,即管理的监听端口,用于操作服务器一些配置等

initExecutor 为初始化的线程个数

timerExecutor 心跳执行线程个数

managerExecutor管理执行线程个数

processors应用接收处理器核数

processorHandler 应用接收处理类个数

processorExecutor 应用接收处理线程个数

 

clusterHeartbeatUserclusterHeartbeatPass 不必改,用于集群的认证方式使用

 

 "brucexx">

    "password">st0078

    "schemas">trans_shard

 

Brucexx为自定义应用用户名,st0078为自定义应用密码

Schemas为自定义schema,具体见schema.xml中,

 

这里的schemas可为多个,以逗号分隔

 

白名单限制:

 

  

   

      test

   

 

 

                

schema.xml配置

mysql数据源

 

    "transDS" type="mysql">

        "location">

            10.58.49.14:8701/db$0-9

   

        "user">root

        "password">st0078

        "sqlMode">STRICT_TRANS_TABLES

   

 

这里指定的mysql的数据源,后面$0-9是一种自定义的缩略写法

也可以在property里面定义多个location,比如:

"location">

            10.58.49.14:8701/db0

10.58.49.14:8701/db1

10.58.49.14:8701/db2

   

 

 

 

效果是一样的

 

Shard结点配置

Shard结点相当于一个逻辑结点,提供给外部相关的schema,对应于数据源有

主/备/灾,

"transDN">

        "dataSource">

           

            transDS$0-9

           

            transSlaveDS$0-9

           

            transSlaveDS$0-9

           

           

       

        "rwRule">

        "poolSize">256

        "heartbeatSQL">select user()

   

 

属性dataSource 第一个是主库,第二个备库,第三个灾库,需要多少配置多少个

 

读写分离规则rwRule,m和s代表读取的比例,表示主库读取为0,从库读取1,这样直接读写分离,如果是1:1的话相当读取各1:1的比例

 

池大小poolSize为到mysqlDB的连接数和心跳sql heartbeatSQL,无特殊需求保持不变

 

Schema配置

"trans_shard">

 

       

"trans_online, trans_content, trans_tb " dataNode="transDN$0-9"rule="rule1" />

   

 trans_shard 提供的schema,对应于server.xml中的名字

下面会有多个需要分库的表,

"trans_online" dataNode="transDN$0-9" rule="rule1" />

这里必须要把需要分库分表的内容写出来,当然,如果不分库表也是可以的

 

”tbxxx" dataNode="transDN0" ruleRequired=”false”/

 

rule.xml 

分库分表规则配置,其中columns,dbRuleList,tbRuleList里面的列名要保持大写

 

首先先上一个整体配置

    "rule1">

        TRANS_ID

   

           

            #set($end=$TRANS_ID.length() - 1)##

            $stringUtil.substring($TRANS_ID,$start,$end)]]>

           

       

       

           

             $stringUtil.substring($TRANS_ID,$start)]]>

       

       

       

               

                        def map = [:];

                        for (int i=0; i

                           def list = [];

                            for (int j=0; j

                                list.add(i+""+j);

                            }

                             map.put(i,list);

                        };

                        return map;

                ]]>

       

   

 

其中dbRuleList 为分库规则

 

           

            #set($end=$TRANS_ID.length() - 1)##

            $stringUtil.substring($TRANS_ID,$start,$end)]]>

           

       

 分库规则dbRuleList可以有多个dbRule,当第一个不满足时,可以用第二个,当然这个效率不好,如果有规则区分,尽量再写一个rule,

dbRule 最后的结果是表的前缀

比如分库分表 库名为db0-db9,那么这个dbRule渲染时

 

取到TRANS_ID 这个为后,在脚本里计算出取倒数第2位为库后缀

比如上图的分库为



 

分表规则配置

           

             $stringUtil.substring($TRANS_ID,$start)]]>

       

这个和上面分库一样了,以倒数1,2位为库的后缀

如下图:



 

 

 有个潜规则就是

需要保证全局的表名不能重复

比如db0有个trans_tb00,db1就不能有叫trans_tb00的表

 

表初始化

       

       

               

                        def map = [:];

                        for (int i=0; i

                           def list = [];

                            for (int j=0; j

                                list.add(i+""+j);

                            }

                             map.put(i,list);

                        };

                        return map;

                ]]>

       

 

需要初始化个表,其中key为db的下标索引,比如db0 的下标为0,

list为每个库里的表后缀名

 

 

目录是为了初始化定义这些库表

 

如何使用呢?

通过命令行


 

这里就不用讲了,wms_shard就是在server.xml里面配置的逻辑分库分表的数据源schema,应用只要访问这个就好了



 

show tables;也可以看到自己的一些表信息



 

ok.

 

mysql> select * from t_user_id_map;

+-----------+---------------------------+-----------+------------+---------------------+---------------------+

| F_uid     | F_uname                   | F_enabled | F_user_id  | F_create_time       | F_modify_time       |

+-----------+---------------------------+-----------+------------+---------------------+---------------------+

| 105001050 | @8230762802717b6a723fe9cd |         1 | 1287824017 | 2014-03-10 15:38:44 | 2014-03-10 15:38:44 |

|     62000 |                           |         1 |  533885000 | 2014-03-26 23:02:31 | 2014-03-26 23:02:31 |

|     86000 |                           |         1 |  237406000 | 2014-03-27 01:04:23 | 2014-03-27 01:04:23 |

|     96000 |                           |         1 |  767684000 | 2014-03-27 00:30:32 | 2014-03-27 00:30:32 |

|    130000 |                           |         1 |  506552000 | 2014-03-27 15:57:31 | 2014-03-27 15:57:31 |

|    149000 |                           |         1 |  868483000 | 2014-03-27 15:50:09 | 2014-03-27 15:50:09 |

|    179000 |                           |         1 |  245626000 | 2014-03-26 21:33:46 | 2014-03-26 21:33:46 |

当没有指定分库分表规则时,是进行的全表扫描,当然我们可以通过学习

mysql> explain select * from t_user_id_map;

+-----------+-----------------------------------

| DATA_NODE | SQL

+-----------+-----------------------------------

| wmsDN[0]  |  select * from t_user_id_map_00_0

| wmsDN[0]  |  select * from t_user_id_map_00_1

| wmsDN[0]  |  select * from t_user_id_map_00_2

| wmsDN[0]  |  select * from t_user_id_map_00_3

| wmsDN[0]  |  select * from t_user_id_map_00_4

| wmsDN[0]  |  select * from t_user_id_map_00_5

| wmsDN[0]  |  select * from t_user_id_map_00_6

| wmsDN[0]  |  select * from t_user_id_map_00_7

| wmsDN[0]  |  select * from t_user_id_map_00_8

| wmsDN[0]  |  select * from t_user_id_map_00_9

| wmsDN[1]  |  select * from t_user_id_map_01_0

| wmsDN[1]  |  select * from t_user_id_map_01_1

| wmsDN[1]  |  select * from t_user_id_map_01_2

| wmsDN[1]  |  select * from t_user_id_map_01_3

| wmsDN[1]  |  select * from t_user_id_map_01_4

| wmsDN[1]  |  select * from t_user_id_map_01_5

| wmsDN[1]  |  select * from t_user_id_map_01_6

| wmsDN[1]  |  select * from t_user_id_map_01_7

| wmsDN[1]  |  select * from t_user_id_map_01_8

| wmsDN[1]  |  select * from t_user_id_map_01_9

| wmsDN[2]  |  select * from t_user_id_map_02_0

....

这边表很多,其中dataNode是我们里面对应的结点

 

mysql> select * from t_user_id_map where f_uid=196606999;

+-----------+---------+-----------+-----------+---------------------+---------------------+

| F_uid     | F_uname | F_enabled | F_user_id | F_create_time       | F_modify_time       |

+-----------+---------+-----------+-----------+---------------------+---------------------+

| 196606999 |         |         1 | 749331999 | 2014-04-04 14:46:58 | 2014-04-04 14:46:58 |

+-----------+---------+-----------+-----------+---------------------+---------------------+

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Wann könnte ein vollständiger Tabellen -Scan schneller sein als einen Index in MySQL? Wann könnte ein vollständiger Tabellen -Scan schneller sein als einen Index in MySQL? Apr 09, 2025 am 12:05 AM

Die volle Tabellenscannung kann in MySQL schneller sein als die Verwendung von Indizes. Zu den spezifischen Fällen gehören: 1) das Datenvolumen ist gering; 2) Wenn die Abfrage eine große Datenmenge zurückgibt; 3) wenn die Indexspalte nicht sehr selektiv ist; 4) Wenn die komplexe Abfrage. Durch Analyse von Abfrageplänen, Optimierung von Indizes, Vermeidung von Überindex und regelmäßiger Wartung von Tabellen können Sie in praktischen Anwendungen die besten Auswahlmöglichkeiten treffen.

Erläutern Sie InnoDB Volltext-Suchfunktionen. Erläutern Sie InnoDB Volltext-Suchfunktionen. Apr 02, 2025 pm 06:09 PM

Die Volltext-Suchfunktionen von InnoDB sind sehr leistungsfähig, was die Effizienz der Datenbankabfrage und die Fähigkeit, große Mengen von Textdaten zu verarbeiten, erheblich verbessern kann. 1) InnoDB implementiert die Volltext-Suche durch invertierte Indexierung und unterstützt grundlegende und erweiterte Suchabfragen. 2) Verwenden Sie die Übereinstimmung und gegen Schlüsselwörter, um den Booleschen Modus und die Phrasesuche zu unterstützen. 3) Die Optimierungsmethoden umfassen die Verwendung der Word -Segmentierungstechnologie, die regelmäßige Wiederaufbauung von Indizes und die Anpassung der Cache -Größe, um die Leistung und Genauigkeit zu verbessern.

Kann ich MySQL unter Windows 7 installieren? Kann ich MySQL unter Windows 7 installieren? Apr 08, 2025 pm 03:21 PM

Ja, MySQL kann unter Windows 7 installiert werden, und obwohl Microsoft Windows 7 nicht mehr unterstützt hat, ist MySQL dennoch kompatibel damit. Während des Installationsprozesses sollten jedoch folgende Punkte festgestellt werden: Laden Sie das MySQL -Installationsprogramm für Windows herunter. Wählen Sie die entsprechende Version von MySQL (Community oder Enterprise) aus. Wählen Sie während des Installationsprozesses das entsprechende Installationsverzeichnis und das Zeichen fest. Stellen Sie das Stammbenutzerkennwort ein und behalten Sie es ordnungsgemäß. Stellen Sie zum Testen eine Verbindung zur Datenbank her. Beachten Sie die Kompatibilitäts- und Sicherheitsprobleme unter Windows 7, und es wird empfohlen, auf ein unterstütztes Betriebssystem zu aktualisieren.

Differenz zwischen Clustered Index und nicht klusterer Index (Sekundärindex) in InnoDB. Differenz zwischen Clustered Index und nicht klusterer Index (Sekundärindex) in InnoDB. Apr 02, 2025 pm 06:25 PM

Der Unterschied zwischen Clustered Index und nicht klusterer Index ist: 1. Clustered Index speichert Datenzeilen in der Indexstruktur, die für die Abfrage nach Primärschlüssel und Reichweite geeignet ist. 2. Der nicht klusterierte Index speichert Indexschlüsselwerte und -zeiger auf Datenzeilen und ist für nicht-primäre Schlüsselspaltenabfragen geeignet.

Was sind einige beliebte MySQL -GUI -Tools (z. B. MySQL Workbench, PhpMyAdmin)? Was sind einige beliebte MySQL -GUI -Tools (z. B. MySQL Workbench, PhpMyAdmin)? Mar 21, 2025 pm 06:28 PM

In Artikel werden beliebte MySQL -GUI -Tools wie MySQL Workbench und PhpMyAdmin beschrieben, die ihre Funktionen und ihre Eignung für Anfänger und fortgeschrittene Benutzer vergleichen. [159 Charaktere]

Wie behandeln Sie große Datensätze in MySQL? Wie behandeln Sie große Datensätze in MySQL? Mar 21, 2025 pm 12:15 PM

In Artikel werden Strategien zum Umgang mit großen Datensätzen in MySQL erörtert, einschließlich Partitionierung, Sharding, Indexierung und Abfrageoptimierung.

MySQL: Einfache Konzepte für einfaches Lernen MySQL: Einfache Konzepte für einfaches Lernen Apr 10, 2025 am 09:29 AM

MySQL ist ein Open Source Relational Database Management System. 1) Datenbank und Tabellen erstellen: Verwenden Sie die Befehle erstellte und creatEtable. 2) Grundlegende Vorgänge: Einfügen, aktualisieren, löschen und auswählen. 3) Fortgeschrittene Operationen: Join-, Unterabfrage- und Transaktionsverarbeitung. 4) Debugging -Fähigkeiten: Syntax, Datentyp und Berechtigungen überprüfen. 5) Optimierungsvorschläge: Verwenden Sie Indizes, vermeiden Sie ausgewählt* und verwenden Sie Transaktionen.

Die Beziehung zwischen MySQL -Benutzer und Datenbank Die Beziehung zwischen MySQL -Benutzer und Datenbank Apr 08, 2025 pm 07:15 PM

In der MySQL -Datenbank wird die Beziehung zwischen dem Benutzer und der Datenbank durch Berechtigungen und Tabellen definiert. Der Benutzer verfügt über einen Benutzernamen und ein Passwort, um auf die Datenbank zuzugreifen. Die Berechtigungen werden über den Zuschussbefehl erteilt, während die Tabelle durch den Befehl create table erstellt wird. Um eine Beziehung zwischen einem Benutzer und einer Datenbank herzustellen, müssen Sie eine Datenbank erstellen, einen Benutzer erstellen und dann Berechtigungen erfüllen.

See all articles