Heim Datenbank MySQL-Tutorial 日志表设计一例分析_MySQL

日志表设计一例分析_MySQL

Jun 01, 2016 pm 01:13 PM

关于关系表的设计归根结底有两个方面。
第一,就是完全按照范式理论去设计,一般来说达到第三范式就可以了,或者你可以划分的更细到达更上一层次。比如第四,第五,第六等等。这种设计有自己的可读性很强,但是有一点,在检索数据的时候增加了多张关系表来做关联的开销。
第二,就是在范式理论上适当的做些反范式,有的东西还是不要太剥离的好。(窄表以及宽表) 这点和软件设计中的紧耦合松耦合理论一致。
下面我就以常用的LOG表来做下演示,其中有两种表的实际,一种是窄表,一种是稍微宽一点的表。
窄表:log_ytt
mysql> show create table log_ytt;+-------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| Table | Create Table |+-------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| log_ytt | CREATE TABLE `log_ytt` (`ids` bigint(20) DEFAULT NULL,`log_time` datetime DEFAULT NULL,KEY `idx_u1` (`ids`,`log_time`)) ENGINE=InnoDB DEFAULT CHARSET=utf8 | +-------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------+1 row in set (0.00 sec)
Nach dem Login kopieren

表记录数

mysql>select * from log_ytt where ids > '4875000001';+------------+---------------------+| ids| log_time|+------------+---------------------+| 7110000001 | 2014-05-20 21:56:42 | | 6300000001 | 2014-05-20 21:56:42 | | 6750000001 | 2014-05-20 21:56:42 | | 5310000001 | 2014-05-20 21:56:42 | | 7200000001 | 2014-05-20 21:56:42 | | 7380000001 | 2014-05-20 21:56:42 | | 5760000001 | 2014-05-20 21:56:42 | | 6930000001 | 2014-05-20 21:56:42 | | 6660000001 | 2014-05-20 21:56:42 | | 5670000001 | 2014-05-20 21:56:42 | | 6210000001 | 2014-05-20 21:56:42 | | 5850000001 | 2014-05-20 21:56:42 | | 6570000001 | 2014-05-20 21:56:42 | | 5580000001 | 2014-05-20 21:56:42 | | 5130000001 | 2014-05-20 21:56:42 | | 7290000001 | 2014-05-20 21:56:42 | | 6390000001 | 2014-05-20 21:56:42 | | 5490000001 | 2014-05-20 21:56:42 | | 5220000001 | 2014-05-20 21:56:42 | | 7560000001 | 2014-05-20 21:56:42 | | 7470000001 | 2014-05-20 21:56:42 | | 7020000001 | 2014-05-20 21:56:42 | | 6840000001 | 2014-05-20 21:56:42 | | 6030000001 | 2014-05-20 21:56:42 | | 6480000001 | 2014-05-20 21:56:42 | | 7650000001 | 2014-05-20 21:56:42 | | 5940000001 | 2014-05-20 21:56:42 | | 6120000001 | 2014-05-20 21:56:42 | | 7740000001 | 2014-05-20 21:56:42 | | 5400000001 | 2014-05-20 21:56:42 | | 5760000001 | 2014-05-21 03:19:07 | | 6840000001 | 2014-05-21 03:19:17 | | 7020000001 | 2014-05-21 03:19:32 | | 7200000001 | 2014-05-21 03:19:45 | | 7110000001 | 2014-05-21 03:19:46 | | 7380000001 | 2014-05-21 03:19:48 | | 5670000001 | 2014-05-21 03:19:58 | | 6930000001 | 2014-05-21 03:19:59 | | 6030000001 | 2014-05-21 03:20:00 | | 5940000001 | 2014-05-21 03:20:00 | | 7290000001 | 2014-05-21 03:20:02 | | 6120000001 | 2014-05-21 03:20:09 | | 5850000001 | 2014-05-21 03:20:18 | | 5580000001 | 2014-05-21 03:20:24 | | 6480000001 | 2014-05-21 03:25:05 | | 6390000001 | 2014-05-21 03:25:37 | | 6210000001 | 2014-05-21 03:25:45 | | 7470000001 | 2014-05-21 03:26:14 | | 6750000001 | 2014-05-21 03:27:17 | | 5310000001 | 2014-05-21 03:27:33 | | 5130000001 | 2014-05-21 03:27:34 | | 6570000001 | 2014-05-21 03:27:34 | | 7560000001 | 2014-05-21 03:27:45 | | 5220000001 | 2014-05-21 03:27:45 | | 5400000001 | 2014-05-21 03:27:53 | | 5490000001 | 2014-05-21 03:27:55 | | 6660000001 | 2014-05-21 03:28:07 | | 6300000001 | 2014-05-21 03:28:13 | | 7740000001 | 2014-05-21 03:28:26 | | 7650000001 | 2014-05-21 03:28:37 | +------------+---------------------+60 rows in set (0.00 sec)
Nach dem Login kopieren
接下来,我们要检索所有IDS的平均时间。 有以下两种方式:
第一, 对表进行了两次访问,并且有GROUP BY 操作,不可取。
mysql> select sec_to_time(avg(timestampdiff(second,a.times,b.times)))as 'running' 	-> from 	-> (select ids,min(log_time) as times from log_ytt where 1 group by ids ) as a,	-> (select ids,max(log_time) as times from log_ytt where 1 group by ids) as b where a.ids = b.ids;+---------------+| running	 |+---------------+| 05:27:08.8333 | +---------------+1 row in set (0.00 sec)
Nach dem Login kopieren
第二,虽然对表进行了最少的访问,但是也有一次GROUP BY 操作。也没办法,表设计如此。
mysql> SELECT SEC_TO_TIME(AVG(times)) AS 'Running' FROM 	-> (	-> SELECT TIMESTAMPDIFF(SECOND,MIN(log_time),MAX(log_time)) AS times FROM log_ytt GROUP BY ids	-> ) AS T;+---------------+| Running	 |+---------------+| 05:27:08.8333 | +---------------+1 row in set (0.00 sec)
Nach dem Login kopieren
宽表:log_ytt_horizontal.
mysql> show create table log_ytt_horizontal;+------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| Table| Create Table|+------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| log_ytt_horizontal | CREATE TABLE `log_ytt_horizontal` (`ids` bigint(20) NOT NULL,`start_time` datetime DEFAULT NULL,`end_time` datetime DEFAULT NULL,PRIMARY KEY (`ids`)) ENGINE=InnoDB DEFAULT CHARSET=utf8 | +------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+1 row in set (0.00 sec)
Nach dem Login kopieren
表记录数:
mysql> select * from log_ytt_horizontal;+------------+---------------------+---------------------+| ids| start_time| end_time|+------------+---------------------+---------------------+| 5130000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:34 | | 5220000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:45 | | 5310000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:33 | | 5400000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:53 | | 5490000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:55 | | 5580000001 | 2014-05-20 21:56:42 | 2014-05-21 03:20:24 | | 5670000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:58 | | 5760000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:07 | | 5850000001 | 2014-05-20 21:56:42 | 2014-05-21 03:20:18 | | 5940000001 | 2014-05-20 21:56:42 | 2014-05-21 03:20:00 | | 6030000001 | 2014-05-20 21:56:42 | 2014-05-21 03:20:00 | | 6120000001 | 2014-05-20 21:56:42 | 2014-05-21 03:20:09 | | 6210000001 | 2014-05-20 21:56:42 | 2014-05-21 03:25:45 | | 6300000001 | 2014-05-20 21:56:42 | 2014-05-21 03:28:13 | | 6390000001 | 2014-05-20 21:56:42 | 2014-05-21 03:25:37 | | 6480000001 | 2014-05-20 21:56:42 | 2014-05-21 03:25:05 | | 6570000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:34 | | 6660000001 | 2014-05-20 21:56:42 | 2014-05-21 03:28:07 | | 6750000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:17 | | 6840000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:17 | | 6930000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:59 | | 7020000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:32 | | 7110000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:46 | | 7200000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:45 | | 7290000001 | 2014-05-20 21:56:42 | 2014-05-21 03:20:02 | | 7380000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:48 | | 7470000001 | 2014-05-20 21:56:42 | 2014-05-21 03:26:14 | | 7560000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:45 | | 7650000001 | 2014-05-20 21:56:42 | 2014-05-21 03:28:37 | | 7740000001 | 2014-05-20 21:56:42 | 2014-05-21 03:28:26 | +------------+---------------------+---------------------+30 rows in set (0.00 sec)
Nach dem Login kopieren
如果对这种稍微冗余一些的表来进行查询,那么对表的访问以及CPU的资源占用都达到了最低。
mysql> select sec_to_time(avg(timestampdiff(second,start_time,end_time))) as 'Running'from log_ytt_horizontal;+---------------+| Running |+---------------+| 05:27:08.8333 | +---------------+1 row in set (0.00 sec)
Nach dem Login kopieren
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Wie verändern Sie eine Tabelle in MySQL mit der Änderungstabelleanweisung? Wie verändern Sie eine Tabelle in MySQL mit der Änderungstabelleanweisung? Mar 19, 2025 pm 03:51 PM

In dem Artikel werden mithilfe der Änderungstabelle von MySQL Tabellen, einschließlich Hinzufügen/Löschen von Spalten, Umbenennung von Tabellen/Spalten und Ändern der Spaltendatentypen, erläutert.

Wie konfiguriere ich die SSL/TLS -Verschlüsselung für MySQL -Verbindungen? Wie konfiguriere ich die SSL/TLS -Verschlüsselung für MySQL -Verbindungen? Mar 18, 2025 pm 12:01 PM

In Artikel werden die Konfiguration der SSL/TLS -Verschlüsselung für MySQL, einschließlich der Erzeugung und Überprüfung von Zertifikaten, erläutert. Das Hauptproblem ist die Verwendung der Sicherheitsauswirkungen von selbstsignierten Zertifikaten. [Charakterzahl: 159]

Wie behandeln Sie große Datensätze in MySQL? Wie behandeln Sie große Datensätze in MySQL? Mar 21, 2025 pm 12:15 PM

In Artikel werden Strategien zum Umgang mit großen Datensätzen in MySQL erörtert, einschließlich Partitionierung, Sharding, Indexierung und Abfrageoptimierung.

Was sind einige beliebte MySQL -GUI -Tools (z. B. MySQL Workbench, PhpMyAdmin)? Was sind einige beliebte MySQL -GUI -Tools (z. B. MySQL Workbench, PhpMyAdmin)? Mar 21, 2025 pm 06:28 PM

In Artikel werden beliebte MySQL -GUI -Tools wie MySQL Workbench und PhpMyAdmin beschrieben, die ihre Funktionen und ihre Eignung für Anfänger und fortgeschrittene Benutzer vergleichen. [159 Charaktere]

Wie lassen Sie eine Tabelle in MySQL mit der Drop -Tabelle -Anweisung fallen? Wie lassen Sie eine Tabelle in MySQL mit der Drop -Tabelle -Anweisung fallen? Mar 19, 2025 pm 03:52 PM

In dem Artikel werden in MySQL die Ablagerung von Tabellen mithilfe der Drop -Tabellenerklärung erörtert, wobei Vorsichtsmaßnahmen und Risiken betont werden. Es wird hervorgehoben, dass die Aktion ohne Backups, die Detaillierung von Wiederherstellungsmethoden und potenzielle Produktionsumfeldgefahren irreversibel ist.

Wie repräsentieren Sie Beziehungen mit fremden Schlüsseln? Wie repräsentieren Sie Beziehungen mit fremden Schlüsseln? Mar 19, 2025 pm 03:48 PM

In Artikeln werden ausländische Schlüssel zur Darstellung von Beziehungen in Datenbanken erörtert, die sich auf Best Practices, Datenintegrität und gemeinsame Fallstricke konzentrieren.

Wie erstellen Sie Indizes für JSON -Spalten? Wie erstellen Sie Indizes für JSON -Spalten? Mar 21, 2025 pm 12:13 PM

In dem Artikel werden in verschiedenen Datenbanken wie PostgreSQL, MySQL und MongoDB Indizes für JSON -Spalten in verschiedenen Datenbanken erstellt, um die Abfrageleistung zu verbessern. Es erläutert die Syntax und die Vorteile der Indizierung spezifischer JSON -Pfade und listet unterstützte Datenbanksysteme auf.

Wie sichere ich mich MySQL gegen gemeinsame Schwachstellen (SQL-Injektion, Brute-Force-Angriffe)? Wie sichere ich mich MySQL gegen gemeinsame Schwachstellen (SQL-Injektion, Brute-Force-Angriffe)? Mar 18, 2025 pm 12:00 PM

Artikel erläutert die Sicherung von MySQL gegen SQL-Injektions- und Brute-Force-Angriffe unter Verwendung vorbereiteter Aussagen, Eingabevalidierung und starken Kennwortrichtlinien (159 Zeichen).

See all articles