Heim Technologie-Peripheriegeräte KI Implementierung eines personalisierten Empfehlungssystems basierend auf dem Transformer-Modell

Implementierung eines personalisierten Empfehlungssystems basierend auf dem Transformer-Modell

Jan 22, 2024 pm 03:42 PM
künstliches neuronales Netzwerk

Implementierung eines personalisierten Empfehlungssystems basierend auf dem Transformer-Modell

Personalisierte Empfehlung basierend auf Transformer ist eine personalisierte Empfehlungsmethode, die mithilfe des Transformer-Modells implementiert wird. Transformer ist ein neuronales Netzwerkmodell, das auf dem Aufmerksamkeitsmechanismus basiert und häufig bei Verarbeitungsaufgaben natürlicher Sprache wie maschineller Übersetzung und Textgenerierung verwendet wird. Durch personalisierte Empfehlungen kann Transformer die Interessen und Vorlieben des Nutzers erfahren und dem Nutzer auf Basis dieser Informationen relevante Inhalte empfehlen. Durch den Aufmerksamkeitsmechanismus ist Transformer in der Lage, die Beziehung zwischen den Interessen des Benutzers und verwandten Inhalten zu erfassen und so die Genauigkeit und Wirksamkeit von Empfehlungen zu verbessern. Durch die Verwendung des Transformer-Modells kann das personalisierte Empfehlungssystem die Bedürfnisse der Benutzer besser verstehen und Benutzern personalisiertere und genauere Empfehlungsdienste bieten.

Bei personalisierten Empfehlungen müssen Sie zunächst eine Interaktionsmatrix zwischen Benutzern und Artikeln erstellen. Diese Matrix erfasst das Nutzerverhalten gegenüber Artikeln, etwa Bewertungen, Klicks oder Käufe. Als nächstes müssen wir diese Interaktionsinformationen in Vektorform umwandeln und zum Training in das Transformer-Modell eingeben. Auf diese Weise kann das Modell die Beziehung zwischen Benutzern und Artikeln lernen und personalisierte Empfehlungsergebnisse generieren. Auf diese Weise können wir die Genauigkeit und Benutzerzufriedenheit des Empfehlungssystems verbessern.

Das Transformer-Modell in personalisierten Empfehlungen umfasst normalerweise einen Encoder und einen Decoder. Der Encoder wird verwendet, um Vektordarstellungen von Benutzern und Elementen zu lernen, und der Decoder wird verwendet, um das Interesse des Benutzers an anderen Elementen vorherzusagen. Diese Architektur kann die komplexen Beziehungen zwischen Benutzern und Elementen effektiv erfassen und dadurch die Genauigkeit und Personalisierung von Empfehlungen verbessern.

Im Encoder wird zunächst ein mehrschichtiger Selbstaufmerksamkeitsmechanismus verwendet, um mit den Vektordarstellungen von Benutzern und Elementen zu interagieren. Der Selbstaufmerksamkeitsmechanismus ermöglicht es dem Modell, effizientere Vektordarstellungen zu lernen, indem es sie entsprechend der Wichtigkeit verschiedener Positionen in der Eingabesequenz gewichtet. Als nächstes wird die Ausgabe des Aufmerksamkeitsmechanismus durch ein vorwärtsgerichtetes neuronales Netzwerk verarbeitet, um die endgültige Vektordarstellung zu erhalten. Diese Methode kann dem Modell helfen, die Korrelationsinformationen zwischen Benutzern und Elementen besser zu erfassen und die Leistung des Empfehlungssystems zu verbessern.

Im Decoder können wir den Benutzervektor und den Artikelvektor verwenden, um das Interesse des Benutzers an anderen Artikeln vorherzusagen. Um die Ähnlichkeit zwischen Benutzern und Artikeln zu berechnen, können wir den Punktprodukt-Aufmerksamkeitsmechanismus verwenden. Durch die Berechnung des Aufmerksamkeitswerts können wir die Korrelation zwischen dem Benutzer und dem Artikel bewerten und diese als Grundlage für die Vorhersage des Ausmaßes des Interesses verwenden. Schließlich können wir Artikel anhand des prognostizierten Interesses bewerten und sie den Benutzern empfehlen. Dieser Ansatz kann die Genauigkeit und Personalisierung von Empfehlungssystemen verbessern.

Um personalisierte Empfehlungen basierend auf Transformer umzusetzen, müssen Sie auf die folgenden Punkte achten:

1 Datenvorbereitung: Sammeln Sie Interaktionsdaten zwischen Benutzern und Elementen und erstellen Sie eine Interaktionsmatrix. Diese Matrix zeichnet die Interaktion zwischen Benutzern und Artikeln auf, die Informationen wie Bewertungen, Klicks und Käufe umfassen kann.

2. Feature-Darstellung: Konvertieren Sie Benutzer und Elemente in der Interaktionsmatrix in Vektordarstellungen. Mithilfe der Einbettungstechnologie können Benutzer und Elemente in einem niedrigdimensionalen Raum abgebildet werden und als Eingabe für das Modell dienen.

3. Modellbau: Erstellen Sie ein Transformer-basiertes Encoder-Decoder-Modell. Der Encoder lernt Vektordarstellungen von Benutzern und Elementen durch einen mehrschichtigen Selbstaufmerksamkeitsmechanismus, und der Decoder verwendet Benutzer- und Elementvektoren, um das Interesse des Benutzers an anderen Elementen vorherzusagen.

4. Modelltraining: Verwenden Sie die Interaktionsdaten zwischen Benutzern und Elementen als Trainingssatz, um das Modell zu trainieren, indem Sie die Lücke zwischen den vorhergesagten Ergebnissen und den tatsächlichen Bewertungen minimieren. Optimierungsalgorithmen wie der Gradientenabstieg können zur Aktualisierung der Modellparameter verwendet werden.

5. Empfehlungsgenerierung: Prognostizieren und bewerten Sie auf der Grundlage des trainierten Modells Elemente, mit denen der Benutzer nicht interagiert hat, und empfehlen Sie dem Benutzer Elemente mit hohem Interesse.

In praktischen Anwendungen haben Transformer-basierte personalisierte Empfehlungen die folgenden Vorteile:

  • Das Modell kann die interaktive Beziehung zwischen Benutzern und Elementen vollständig berücksichtigen und umfangreichere semantische Informationen erfassen.
  • Das Transformer-Modell verfügt über eine gute Skalierbarkeit und Parallelität und kann große Datensätze und viele gleichzeitige Anforderungen verarbeiten.
  • Das Modell kann Feature-Darstellungen automatisch lernen, wodurch der Bedarf an manueller Feature-Entwicklung reduziert wird.

Allerdings stehen Transformer-basierte personalisierte Empfehlungen auch vor einigen Herausforderungen:

  • Datensparsität: In realen Szenarien sind die Interaktionsdaten zwischen Benutzern und Elementen häufig spärlich. Da Benutzer nur mit einer kleinen Anzahl von Elementen interagiert haben, fehlen in den Daten viele Werte, was das Lernen und die Vorhersage des Modells erschwert.
  • Kaltstartproblem: Wenn neue Benutzer oder neue Elemente dem System beitreten, können ihre Interessen und Vorlieben aufgrund fehlender ausreichender Interaktionsdaten nicht genau erfasst werden. Dies erfordert die Lösung des Kaltstartproblems und die Bereitstellung von Empfehlungen für neue Benutzer und neue Elemente durch andere Methoden (z. B. inhaltsbasierte Empfehlungen, kollaborative Filterung usw.).
  • Diversität und Long-Tail-Probleme: Bei personalisierten Empfehlungen besteht häufig das Problem, beliebte Artikel zu verfolgen, was zu mangelnder Diversität bei den Empfehlungsergebnissen und zur Ignorierung von Long-Tail-Artikeln führt. Das Transformer-Modell erfasst möglicherweise eher die Korrelation zwischen beliebten Elementen während des Lernprozesses, der Empfehlungseffekt für Long-Tail-Elemente ist jedoch gering.
  • Interpretierbarkeit und Interpretierbarkeit: Als Black-Box-Modell sind die Vorhersageergebnisse des Transformer-Modells oft schwer zu erklären. In einigen Anwendungsszenarien möchten Benutzer verstehen, warum solche Empfehlungsergebnisse erhalten werden, und das Modell muss über bestimmte Erklärungsfähigkeiten verfügen.
  • Echtzeit und Effizienz: Transformatorbasierte Modelle weisen in der Regel große Netzwerkstrukturen und Parametermengen auf und erfordern hohe Rechenressourcen. In Echtzeit-Empfehlungsszenarien müssen personalisierte Empfehlungsergebnisse schnell generiert werden, und das herkömmliche Transformer-Modell kann eine hohe Rechenkomplexität und Latenz aufweisen.

Das obige ist der detaillierte Inhalt vonImplementierung eines personalisierten Empfehlungssystems basierend auf dem Transformer-Modell. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Entdecken Sie die Konzepte, Unterschiede, Vor- und Nachteile von RNN, LSTM und GRU Entdecken Sie die Konzepte, Unterschiede, Vor- und Nachteile von RNN, LSTM und GRU Jan 22, 2024 pm 07:51 PM

In Zeitreihendaten gibt es Abhängigkeiten zwischen Beobachtungen, sie sind also nicht unabhängig voneinander. Herkömmliche neuronale Netze behandeln jedoch jede Beobachtung als unabhängig, was die Fähigkeit des Modells zur Modellierung von Zeitreihendaten einschränkt. Um dieses Problem zu lösen, wurde das Recurrent Neural Network (RNN) eingeführt, das das Konzept des Speichers einführte, um die dynamischen Eigenschaften von Zeitreihendaten zu erfassen, indem Abhängigkeiten zwischen Datenpunkten im Netzwerk hergestellt werden. Durch wiederkehrende Verbindungen kann RNN frühere Informationen an die aktuelle Beobachtung weitergeben, um zukünftige Werte besser vorherzusagen. Dies macht RNN zu einem leistungsstarken Werkzeug für Aufgaben mit Zeitreihendaten. Aber wie erreicht RNN diese Art von Gedächtnis? RNN realisiert das Gedächtnis durch die Rückkopplungsschleife im neuronalen Netzwerk. Dies ist der Unterschied zwischen RNN und herkömmlichen neuronalen Netzwerken.

Berechnung von Gleitkommaoperanden (FLOPS) für neuronale Netze Berechnung von Gleitkommaoperanden (FLOPS) für neuronale Netze Jan 22, 2024 pm 07:21 PM

FLOPS ist einer der Standards zur Bewertung der Computerleistung und dient zur Messung der Anzahl der Gleitkommaoperationen pro Sekunde. In neuronalen Netzen wird FLOPS häufig verwendet, um die Rechenkomplexität des Modells und die Nutzung von Rechenressourcen zu bewerten. Es ist ein wichtiger Indikator zur Messung der Rechenleistung und Effizienz eines Computers. Ein neuronales Netzwerk ist ein komplexes Modell, das aus mehreren Neuronenschichten besteht und für Aufgaben wie Datenklassifizierung, Regression und Clustering verwendet wird. Das Training und die Inferenz neuronaler Netze erfordert eine große Anzahl von Matrixmultiplikationen, Faltungen und anderen Rechenoperationen, sodass die Rechenkomplexität sehr hoch ist. Mit FLOPS (FloatingPointOperationsperSecond) kann die Rechenkomplexität neuronaler Netze gemessen werden, um die Effizienz der Rechenressourcennutzung des Modells zu bewerten. FLOP

Eine Fallstudie zur Verwendung des bidirektionalen LSTM-Modells zur Textklassifizierung Eine Fallstudie zur Verwendung des bidirektionalen LSTM-Modells zur Textklassifizierung Jan 24, 2024 am 10:36 AM

Das bidirektionale LSTM-Modell ist ein neuronales Netzwerk, das zur Textklassifizierung verwendet wird. Unten finden Sie ein einfaches Beispiel, das zeigt, wie bidirektionales LSTM für Textklassifizierungsaufgaben verwendet wird. Zuerst müssen wir die erforderlichen Bibliotheken und Module importieren: importosimportnumpyasnpfromkeras.preprocessing.textimportTokenizerfromkeras.preprocessing.sequenceimportpad_sequencesfromkeras.modelsimportSequentialfromkeras.layersimportDense,Em

Definition und Strukturanalyse eines Fuzzy-Neuronalen Netzwerks Definition und Strukturanalyse eines Fuzzy-Neuronalen Netzwerks Jan 22, 2024 pm 09:09 PM

Das Fuzzy-Neuronale Netzwerk ist ein Hybridmodell, das Fuzzy-Logik und neuronale Netzwerke kombiniert, um unscharfe oder unsichere Probleme zu lösen, die mit herkömmlichen neuronalen Netzwerken nur schwer zu bewältigen sind. Sein Design ist von der Unschärfe und Unsicherheit der menschlichen Wahrnehmung inspiriert und wird daher häufig in Steuerungssystemen, Mustererkennung, Data Mining und anderen Bereichen eingesetzt. Die Grundarchitektur eines Fuzzy-Neuronalen Netzwerks besteht aus einem Fuzzy-Subsystem und einem Neuronalen Subsystem. Das Fuzzy-Subsystem verwendet Fuzzy-Logik, um Eingabedaten zu verarbeiten und in Fuzzy-Sätze umzuwandeln, um die Unschärfe und Unsicherheit der Eingabedaten auszudrücken. Das neuronale Subsystem nutzt neuronale Netze zur Verarbeitung von Fuzzy-Sets für Aufgaben wie Klassifizierung, Regression oder Clustering. Durch die Interaktion zwischen dem Fuzzy-Subsystem und dem neuronalen Subsystem verfügt das Fuzzy-Neuronale Netzwerk über leistungsfähigere Verarbeitungsfähigkeiten und kann

Einführung in SqueezeNet und seine Eigenschaften Einführung in SqueezeNet und seine Eigenschaften Jan 22, 2024 pm 07:15 PM

SqueezeNet ist ein kleiner und präziser Algorithmus, der eine gute Balance zwischen hoher Genauigkeit und geringer Komplexität schafft und sich daher ideal für mobile und eingebettete Systeme mit begrenzten Ressourcen eignet. Im Jahr 2016 schlugen Forscher von DeepScale, der University of California, Berkeley und der Stanford University SqueezeNet vor, ein kompaktes und effizientes Faltungs-Neuronales Netzwerk (CNN). In den letzten Jahren haben Forscher mehrere Verbesserungen an SqueezeNet vorgenommen, darunter SqueezeNetv1.1 und SqueezeNetv2.0. Verbesserungen in beiden Versionen erhöhen nicht nur die Genauigkeit, sondern senken auch die Rechenkosten. Genauigkeit von SqueezeNetv1.1 im ImageNet-Datensatz

Bildrauschen mithilfe von Faltungs-Neuronalen Netzen Bildrauschen mithilfe von Faltungs-Neuronalen Netzen Jan 23, 2024 pm 11:48 PM

Faltungs-Neuronale Netze eignen sich gut für Aufgaben zur Bildrauschunterdrückung. Es nutzt die erlernten Filter, um das Rauschen zu filtern und so das Originalbild wiederherzustellen. In diesem Artikel wird die Methode zur Bildentrauschung basierend auf einem Faltungs-Neuronalen Netzwerk ausführlich vorgestellt. 1. Überblick über das Convolutional Neural Network Das Convolutional Neural Network ist ein Deep-Learning-Algorithmus, der eine Kombination aus mehreren Faltungsschichten, Pooling-Schichten und vollständig verbundenen Schichten verwendet, um Bildmerkmale zu lernen und zu klassifizieren. In der Faltungsschicht werden die lokalen Merkmale des Bildes durch Faltungsoperationen extrahiert und so die räumliche Korrelation im Bild erfasst. Die Pooling-Schicht reduziert den Rechenaufwand durch Reduzierung der Feature-Dimension und behält die Hauptfeatures bei. Die vollständig verbundene Schicht ist für die Zuordnung erlernter Merkmale und Beschriftungen zur Implementierung der Bildklassifizierung oder anderer Aufgaben verantwortlich. Das Design dieser Netzwerkstruktur macht das Faltungs-Neuronale Netzwerk für die Bildverarbeitung und -erkennung nützlich.

Schritte zum Schreiben eines einfachen neuronalen Netzwerks mit Rust Schritte zum Schreiben eines einfachen neuronalen Netzwerks mit Rust Jan 23, 2024 am 10:45 AM

Rust ist eine Programmiersprache auf Systemebene, die sich auf Sicherheit, Leistung und Parallelität konzentriert. Ziel ist es, eine sichere und zuverlässige Programmiersprache bereitzustellen, die für Szenarien wie Betriebssysteme, Netzwerkanwendungen und eingebettete Systeme geeignet ist. Die Sicherheit von Rust beruht hauptsächlich auf zwei Aspekten: dem Eigentumssystem und dem Kreditprüfer. Das Besitzsystem ermöglicht es dem Compiler, den Code zur Kompilierungszeit auf Speicherfehler zu überprüfen und so häufige Speichersicherheitsprobleme zu vermeiden. Indem Rust die Überprüfung der Eigentumsübertragungen von Variablen zur Kompilierungszeit erzwingt, stellt Rust sicher, dass Speicherressourcen ordnungsgemäß verwaltet und freigegeben werden. Der Borrow-Checker analysiert den Lebenszyklus der Variablen, um sicherzustellen, dass nicht mehrere Threads gleichzeitig auf dieselbe Variable zugreifen, wodurch häufige Sicherheitsprobleme bei der Parallelität vermieden werden. Durch die Kombination dieser beiden Mechanismen ist Rust in der Lage, Folgendes bereitzustellen

Kausales Faltungs-Neuronales Netzwerk Kausales Faltungs-Neuronales Netzwerk Jan 24, 2024 pm 12:42 PM

Das kausale Faltungs-Neuronale Netzwerk ist ein spezielles Faltungs-Neuronales Netzwerk, das für Kausalitätsprobleme in Zeitreihendaten entwickelt wurde. Im Vergleich zu herkömmlichen Faltungs-Neuronalen Netzen bieten kausale Faltungs-Neuronale Netze einzigartige Vorteile bei der Beibehaltung der kausalen Beziehung von Zeitreihen und werden häufig bei der Vorhersage und Analyse von Zeitreihendaten verwendet. Die Kernidee des kausalen Faltungs-Neuronalen Netzwerks besteht darin, Kausalität in die Faltungsoperation einzuführen. Herkömmliche Faltungs-Neuronale Netze können gleichzeitig Daten vor und nach dem aktuellen Zeitpunkt wahrnehmen, bei der Vorhersage von Zeitreihen kann dies jedoch zu Informationsverlustproblemen führen. Da die Vorhersageergebnisse zum aktuellen Zeitpunkt durch die Daten zu zukünftigen Zeitpunkten beeinflusst werden. Das kausale Faltungs-Neuronale Netzwerk löst dieses Problem. Es kann nur den aktuellen Zeitpunkt und frühere Daten wahrnehmen, aber keine zukünftigen Daten.

See all articles