


Beispiele für lineare Regression: Methoden zur Vorhersage kontinuierlicher Variablen
Lineare Regression ist ein häufig verwendeter Algorithmus für maschinelles Lernen, mit dem die lineare Beziehung zwischen einer kontinuierlichen Variablen und einer oder mehreren unabhängigen Variablen vorhergesagt werden kann. In diesem Artikel wird die Funktionsweise der linearen Regression vorgestellt und der Vorhersageprozess anhand eines Beispiels und Python-Codes demonstriert.
1. Funktionsweise der linearen Regression
Die lineare Regression ist ein überwachter Lernalgorithmus, der den Wert einer kontinuierlichen Variablen anhand einer Reihe unabhängiger Variablen (oder Merkmale) vorhersagt. Bei der einfachen linearen Regression sagt nur eine unabhängige Variable den Wert der abhängigen Variablen voraus; bei der multiplen linearen Regression gibt es mehrere unabhängige Variablen, die den Wert der abhängigen Variablen vorhersagen. Dieser Algorithmus kann verwendet werden, um die Werte kontinuierlicher Variablen wie Immobilienpreise und -verkäufe vorherzusagen. Indem die Linie der besten Anpassung ermittelt wird, kann die lineare Regression Vorhersagen und Erklärungen für die abhängige Variable liefern.
Die Grundidee der linearen Regression besteht darin, den Fehler zwischen dem vorhergesagten Wert und dem tatsächlichen Wert zu minimieren, indem eine am besten passende Gerade gefunden wird. Die gerade Linie kann in der Form y=mx+b ausgedrückt werden, wobei y die abhängige Variable, x die unabhängige Variable, m die Steigung und b den Achsenabschnitt darstellt.
Um die am besten passende Gerade zu finden, verwenden wir die Methode der kleinsten Quadrate. Die Kernidee dieser Methode besteht darin, eine Gerade zu finden, die die Summe der Abstände aller Datenpunkte zur Geraden minimiert.
2. Beispiel einer linearen Regression
Angenommen, wir haben einen Datensatz, der die Fläche und den Preis von Häusern in einer bestimmten Stadt darstellt. Wir wollen die lineare Regression nutzen, um den Preis einer Fläche eines Hauses vorherzusagen. Wir können die Fläche des Hauses als unabhängige Variable x und den Preis als abhängige Variable y verwenden.

Zuerst müssen wir die notwendigen Bibliotheken und Daten importieren:
import numpy as np import matplotlib.pyplot as plt # 数据 x = np.array([70, 80, 100, 120, 150, 180, 200]) y = np.array([320, 360, 420, 480, 600, 720, 800])
Als nächstes können wir ein Streudiagramm der Daten zeichnen:
plt.scatter(x, y) plt.xlabel('房屋面积(平方米)') plt.ylabel('价格(万元)') plt.show()
Wie aus dem Streudiagramm ersichtlich ist, sind die Hausfläche und Preis Es besteht eine gewisse lineare Beziehung zwischen ihnen. Jetzt können wir die lineare Regression verwenden, um die Daten anzupassen und den Preis eines neuen Hauses pro Quadratmeter vorherzusagen.
from sklearn.linear_model import LinearRegression # 创建线性回归模型 model = LinearRegression() # 训练模型 model.fit(x.reshape(-1, 1), y) # 预测房屋面积为120平方米的价格 new_x = np.array([120]) predicted_y = model.predict(new_x.reshape(-1, 1)) print(predicted_y) # 输出 [452.85714286]
Wir verwenden das LinearRegression-Modell aus der Scikit-learn-Bibliothek, um ein lineares Regressionsmodell zu erstellen und es mithilfe der Trainingsdaten zu trainieren. Dann verwendeten wir das Modell, um den Preis eines neuen Hauses mit einer Fläche von 120 Quadratmetern vorherzusagen, und das vorhergesagte Ergebnis betrug 452.857 Yuan.
Schließlich können wir die passende gerade Linie und die Vorhersageergebnisse zeichnen:
# 绘制拟合直线 line_x = np.linspace(50, 220, 100) line_y = model.predict(line_x.reshape(-1, 1)) plt.plot(line_x, line_y, color='r') #绘制预测结果 plt.scatter(new_x, predicted_y, color='g') # 绘制原始数据 plt.scatter(x, y) # 添加标签和标题 plt.xlabel('房屋面积(平方米)') plt.ylabel('价格(万元)') plt.title('房屋面积与价格的线性关系') plt.show()
Wie aus der obigen Abbildung ersichtlich ist, passt die passende gerade Linie gut zu den Daten und die Vorhersageergebnisse sind auch relativ genau.
3. Zusammenfassung
Dieser Artikel stellt das Funktionsprinzip der linearen Regression vor und demonstriert anhand eines praktischen Beispiels, wie Python für die Vorhersage der linearen Regression verwendet wird. Die lineare Regression ist ein einfacher, aber effektiver Algorithmus für maschinelles Lernen, mit dem viele praktische Probleme gelöst werden können, z. B. die Vorhersage von Immobilienpreisen, Verkaufsprognosen usw. In praktischen Anwendungen müssen wir geeignete Funktionen und Modelle basierend auf spezifischen Problemen auswählen und eine Datenvorverarbeitung und Modelloptimierung durchführen, um bessere Vorhersageergebnisse zu erhalten.
Das obige ist der detaillierte Inhalt vonBeispiele für lineare Regression: Methoden zur Vorhersage kontinuierlicher Variablen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Bei der Bildanmerkung handelt es sich um das Verknüpfen von Beschriftungen oder beschreibenden Informationen mit Bildern, um dem Bildinhalt eine tiefere Bedeutung und Erklärung zu verleihen. Dieser Prozess ist entscheidend für maschinelles Lernen, das dabei hilft, Sehmodelle zu trainieren, um einzelne Elemente in Bildern genauer zu identifizieren. Durch das Hinzufügen von Anmerkungen zu Bildern kann der Computer die Semantik und den Kontext hinter den Bildern verstehen und so den Bildinhalt besser verstehen und analysieren. Die Bildanmerkung hat ein breites Anwendungsspektrum und deckt viele Bereiche ab, z. B. Computer Vision, Verarbeitung natürlicher Sprache und Diagramm-Vision-Modelle. Sie verfügt über ein breites Anwendungsspektrum, z. B. zur Unterstützung von Fahrzeugen bei der Identifizierung von Hindernissen auf der Straße und bei der Erkennung und Diagnose von Krankheiten durch medizinische Bilderkennung. In diesem Artikel werden hauptsächlich einige bessere Open-Source- und kostenlose Bildanmerkungstools empfohlen. 1.Makesens

In den Bereichen maschinelles Lernen und Datenwissenschaft stand die Interpretierbarkeit von Modellen schon immer im Fokus von Forschern und Praktikern. Mit der weit verbreiteten Anwendung komplexer Modelle wie Deep Learning und Ensemble-Methoden ist das Verständnis des Entscheidungsprozesses des Modells besonders wichtig geworden. Explainable AI|XAI trägt dazu bei, Vertrauen in maschinelle Lernmodelle aufzubauen, indem es die Transparenz des Modells erhöht. Eine Verbesserung der Modelltransparenz kann durch Methoden wie den weit verbreiteten Einsatz mehrerer komplexer Modelle sowie der Entscheidungsprozesse zur Erläuterung der Modelle erreicht werden. Zu diesen Methoden gehören die Analyse der Merkmalsbedeutung, die Schätzung des Modellvorhersageintervalls, lokale Interpretierbarkeitsalgorithmen usw. Die Merkmalswichtigkeitsanalyse kann den Entscheidungsprozess des Modells erklären, indem sie den Grad des Einflusses des Modells auf die Eingabemerkmale bewertet. Schätzung des Modellvorhersageintervalls

Laienhaft ausgedrückt ist ein Modell für maschinelles Lernen eine mathematische Funktion, die Eingabedaten einer vorhergesagten Ausgabe zuordnet. Genauer gesagt ist ein Modell für maschinelles Lernen eine mathematische Funktion, die Modellparameter anpasst, indem sie aus Trainingsdaten lernt, um den Fehler zwischen der vorhergesagten Ausgabe und der wahren Bezeichnung zu minimieren. Beim maschinellen Lernen gibt es viele Modelle, z. B. logistische Regressionsmodelle, Entscheidungsbaummodelle, Support-Vektor-Maschinenmodelle usw. Jedes Modell verfügt über seine anwendbaren Datentypen und Problemtypen. Gleichzeitig gibt es viele Gemeinsamkeiten zwischen verschiedenen Modellen oder es gibt einen verborgenen Weg für die Modellentwicklung. Am Beispiel des konnektionistischen Perzeptrons können wir es durch Erhöhen der Anzahl verborgener Schichten des Perzeptrons in ein tiefes neuronales Netzwerk umwandeln. Wenn dem Perzeptron eine Kernelfunktion hinzugefügt wird, kann es in eine SVM umgewandelt werden. Dieses hier

In diesem Artikel wird vorgestellt, wie Überanpassung und Unteranpassung in Modellen für maschinelles Lernen mithilfe von Lernkurven effektiv identifiziert werden können. Unteranpassung und Überanpassung 1. Überanpassung Wenn ein Modell mit den Daten übertrainiert ist, sodass es daraus Rauschen lernt, spricht man von einer Überanpassung des Modells. Ein überangepasstes Modell lernt jedes Beispiel so perfekt, dass es ein unsichtbares/neues Beispiel falsch klassifiziert. Für ein überangepasstes Modell erhalten wir einen perfekten/nahezu perfekten Trainingssatzwert und einen schrecklichen Validierungssatz-/Testwert. Leicht geändert: „Ursache der Überanpassung: Verwenden Sie ein komplexes Modell, um ein einfaches Problem zu lösen und Rauschen aus den Daten zu extrahieren. Weil ein kleiner Datensatz als Trainingssatz möglicherweise nicht die korrekte Darstellung aller Daten darstellt. 2. Unteranpassung Heru.“

In den 1950er Jahren wurde die künstliche Intelligenz (KI) geboren. Damals entdeckten Forscher, dass Maschinen menschenähnliche Aufgaben wie das Denken ausführen können. Später, in den 1960er Jahren, finanzierte das US-Verteidigungsministerium künstliche Intelligenz und richtete Labore für die weitere Entwicklung ein. Forscher finden Anwendungen für künstliche Intelligenz in vielen Bereichen, etwa bei der Erforschung des Weltraums und beim Überleben in extremen Umgebungen. Unter Weltraumforschung versteht man die Erforschung des Universums, das das gesamte Universum außerhalb der Erde umfasst. Der Weltraum wird als extreme Umgebung eingestuft, da sich seine Bedingungen von denen auf der Erde unterscheiden. Um im Weltraum zu überleben, müssen viele Faktoren berücksichtigt und Vorkehrungen getroffen werden. Wissenschaftler und Forscher glauben, dass die Erforschung des Weltraums und das Verständnis des aktuellen Zustands aller Dinge dazu beitragen können, die Funktionsweise des Universums zu verstehen und sich auf mögliche Umweltkrisen vorzubereiten

Zu den häufigsten Herausforderungen, mit denen Algorithmen für maschinelles Lernen in C++ konfrontiert sind, gehören Speicherverwaltung, Multithreading, Leistungsoptimierung und Wartbarkeit. Zu den Lösungen gehören die Verwendung intelligenter Zeiger, moderner Threading-Bibliotheken, SIMD-Anweisungen und Bibliotheken von Drittanbietern sowie die Einhaltung von Codierungsstilrichtlinien und die Verwendung von Automatisierungstools. Praktische Fälle zeigen, wie man die Eigen-Bibliothek nutzt, um lineare Regressionsalgorithmen zu implementieren, den Speicher effektiv zu verwalten und leistungsstarke Matrixoperationen zu nutzen.

Übersetzer |. Rezensiert von Li Rui |. Chonglou Modelle für künstliche Intelligenz (KI) und maschinelles Lernen (ML) werden heutzutage immer komplexer, und die von diesen Modellen erzeugten Ergebnisse sind eine Blackbox, die den Stakeholdern nicht erklärt werden kann. Explainable AI (XAI) zielt darauf ab, dieses Problem zu lösen, indem es Stakeholdern ermöglicht, die Funktionsweise dieser Modelle zu verstehen, sicherzustellen, dass sie verstehen, wie diese Modelle tatsächlich Entscheidungen treffen, und Transparenz in KI-Systemen, Vertrauen und Verantwortlichkeit zur Lösung dieses Problems gewährleistet. In diesem Artikel werden verschiedene Techniken der erklärbaren künstlichen Intelligenz (XAI) untersucht, um ihre zugrunde liegenden Prinzipien zu veranschaulichen. Mehrere Gründe, warum erklärbare KI von entscheidender Bedeutung ist. Vertrauen und Transparenz: Damit KI-Systeme allgemein akzeptiert und vertrauenswürdig sind, müssen Benutzer verstehen, wie Entscheidungen getroffen werden

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist
