Effiziente Netzwerkstruktur: EfficientNet
EfficientNet ist eine effiziente und skalierbare Faltungs-Neuronale Netzwerkstruktur mit automatischer Modellskalierung. Die Kernidee besteht darin, die Leistung des Modells durch Erhöhung der Tiefe, Breite und Auflösung des Netzwerks auf Basis einer effizienten Grundnetzwerkstruktur zu verbessern. Im Vergleich zum mühsamen Prozess der manuellen Anpassung der Netzwerkstruktur verbessert diese Methode nicht nur die Effizienz und Genauigkeit des Modells, sondern vermeidet auch unnötige Arbeit. Durch die automatische Modellskalierungsmethode kann EfficientNet die Größe des Netzwerks automatisch an die Anforderungen der Aufgabe anpassen, sodass das Modell in verschiedenen Szenarien bessere Ergebnisse erzielen kann. Dies macht EfficientNet zu einer sehr praktischen neuronalen Netzwerkstruktur, die für verschiedene Aufgaben im Bereich Computer Vision weit verbreitet ist.
Die Modellstruktur von EfficientNet basiert auf drei Schlüsselkomponenten: Tiefe, Breite und Auflösung. Die Tiefe bezieht sich auf die Anzahl der Schichten im Netzwerk, während sich die Breite auf die Anzahl der Kanäle in jeder Schicht bezieht. Die Auflösung bezieht sich auf die Größe des Eingabebildes. Durch das Ausbalancieren dieser drei Komponenten können wir ein effizientes und genaues Modell erhalten.
EfficientNet verwendet einen leichten Faltungsblock namens MBConv-Block als grundlegende Netzwerkstruktur. Der MBConv-Block besteht aus drei Teilen: einer 1x1-Faltung, einer skalierbaren, in der Tiefe trennbaren Faltung und einer 1x1-Faltung. Die 1x1-Faltung wird hauptsächlich zum Anpassen der Anzahl der Kanäle verwendet, während die tiefentrennbare Faltung verwendet wird, um den Rechenaufwand und die Anzahl der Parameter zu reduzieren. Durch das Stapeln mehrerer MBConv-Blöcke kann eine effiziente grundlegende Netzwerkstruktur aufgebaut werden. Dieses Design ermöglicht EfficientNet eine geringere Modellgröße und Rechenkomplexität bei gleichzeitig hoher Leistung.
In EfficientNet kann die Modellskalierungsmethode in zwei Hauptschritte unterteilt werden. Erstens wird die grundlegende Netzwerkstruktur verbessert, indem die Tiefe, Breite und Auflösung des Netzwerks erhöht werden. Zweitens werden die drei Komponenten mithilfe eines zusammengesetzten Skalierungsfaktors ausgeglichen. Zu diesen zusammengesetzten Skalierungsfaktoren gehören Tiefenskalierungsfaktoren, Breitenskalierungsfaktoren und Auflösungsskalierungsfaktoren. Diese Skalierungsfaktoren werden durch eine zusammengesetzte Funktion kombiniert, um den endgültigen Skalierungsfaktor zu erhalten, der zum Anpassen der Modellstruktur verwendet wird. Auf diese Weise kann EfficientNet die Modelleffizienz und -genauigkeit verbessern und gleichzeitig die Modellleistung aufrechterhalten.
Das EfficientNet-Modell kann entsprechend seiner Größe als EfficientNetB{N} ausgedrückt werden, wobei N eine Ganzzahl ist, die zur Darstellung des Maßstabs des Modells verwendet wird. Es besteht ein positiver Zusammenhang zwischen Modellgröße und Leistung, d. h. je größer das Modell, desto besser die Leistung. Mit zunehmender Modellgröße steigen jedoch auch die Rechen- und Speicherkosten entsprechend. Derzeit bietet EfficientNet sieben Modelle unterschiedlicher Größe von B0 bis B7 an. Benutzer können die passende Modellgröße entsprechend den spezifischen Aufgabenanforderungen auswählen.
Neben der grundlegenden Netzwerkstruktur nutzt EfficientNet auch einige andere Technologien, um die Leistung des Modells zu verbessern. Die wichtigste davon ist die Swish-Aktivierungsfunktion, die eine bessere Leistung aufweist als die häufig verwendete ReLU-Aktivierungsfunktion. Darüber hinaus nutzt EfficientNet auch die DropConnect-Technologie, um Überanpassungen zu verhindern, und Standardisierungstechnologien, um die Stabilität des Modells zu verbessern.
Das obige ist der detaillierte Inhalt vonEffiziente Netzwerkstruktur: EfficientNet. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



In Zeitreihendaten gibt es Abhängigkeiten zwischen Beobachtungen, sie sind also nicht unabhängig voneinander. Herkömmliche neuronale Netze behandeln jedoch jede Beobachtung als unabhängig, was die Fähigkeit des Modells zur Modellierung von Zeitreihendaten einschränkt. Um dieses Problem zu lösen, wurde das Recurrent Neural Network (RNN) eingeführt, das das Konzept des Speichers einführte, um die dynamischen Eigenschaften von Zeitreihendaten zu erfassen, indem Abhängigkeiten zwischen Datenpunkten im Netzwerk hergestellt werden. Durch wiederkehrende Verbindungen kann RNN frühere Informationen an die aktuelle Beobachtung weitergeben, um zukünftige Werte besser vorherzusagen. Dies macht RNN zu einem leistungsstarken Werkzeug für Aufgaben mit Zeitreihendaten. Aber wie erreicht RNN diese Art von Gedächtnis? RNN realisiert das Gedächtnis durch die Rückkopplungsschleife im neuronalen Netzwerk. Dies ist der Unterschied zwischen RNN und herkömmlichen neuronalen Netzwerken.

FLOPS ist einer der Standards zur Bewertung der Computerleistung und dient zur Messung der Anzahl der Gleitkommaoperationen pro Sekunde. In neuronalen Netzen wird FLOPS häufig verwendet, um die Rechenkomplexität des Modells und die Nutzung von Rechenressourcen zu bewerten. Es ist ein wichtiger Indikator zur Messung der Rechenleistung und Effizienz eines Computers. Ein neuronales Netzwerk ist ein komplexes Modell, das aus mehreren Neuronenschichten besteht und für Aufgaben wie Datenklassifizierung, Regression und Clustering verwendet wird. Das Training und die Inferenz neuronaler Netze erfordert eine große Anzahl von Matrixmultiplikationen, Faltungen und anderen Rechenoperationen, sodass die Rechenkomplexität sehr hoch ist. Mit FLOPS (FloatingPointOperationsperSecond) kann die Rechenkomplexität neuronaler Netze gemessen werden, um die Effizienz der Rechenressourcennutzung des Modells zu bewerten. FLOP

Das Fuzzy-Neuronale Netzwerk ist ein Hybridmodell, das Fuzzy-Logik und neuronale Netzwerke kombiniert, um unscharfe oder unsichere Probleme zu lösen, die mit herkömmlichen neuronalen Netzwerken nur schwer zu bewältigen sind. Sein Design ist von der Unschärfe und Unsicherheit der menschlichen Wahrnehmung inspiriert und wird daher häufig in Steuerungssystemen, Mustererkennung, Data Mining und anderen Bereichen eingesetzt. Die Grundarchitektur eines Fuzzy-Neuronalen Netzwerks besteht aus einem Fuzzy-Subsystem und einem Neuronalen Subsystem. Das Fuzzy-Subsystem verwendet Fuzzy-Logik, um Eingabedaten zu verarbeiten und in Fuzzy-Sätze umzuwandeln, um die Unschärfe und Unsicherheit der Eingabedaten auszudrücken. Das neuronale Subsystem nutzt neuronale Netze zur Verarbeitung von Fuzzy-Sets für Aufgaben wie Klassifizierung, Regression oder Clustering. Durch die Interaktion zwischen dem Fuzzy-Subsystem und dem neuronalen Subsystem verfügt das Fuzzy-Neuronale Netzwerk über leistungsfähigere Verarbeitungsfähigkeiten und kann

Das bidirektionale LSTM-Modell ist ein neuronales Netzwerk, das zur Textklassifizierung verwendet wird. Unten finden Sie ein einfaches Beispiel, das zeigt, wie bidirektionales LSTM für Textklassifizierungsaufgaben verwendet wird. Zuerst müssen wir die erforderlichen Bibliotheken und Module importieren: importosimportnumpyasnpfromkeras.preprocessing.textimportTokenizerfromkeras.preprocessing.sequenceimportpad_sequencesfromkeras.modelsimportSequentialfromkeras.layersimportDense,Em

Faltungs-Neuronale Netze eignen sich gut für Aufgaben zur Bildrauschunterdrückung. Es nutzt die erlernten Filter, um das Rauschen zu filtern und so das Originalbild wiederherzustellen. In diesem Artikel wird die Methode zur Bildentrauschung basierend auf einem Faltungs-Neuronalen Netzwerk ausführlich vorgestellt. 1. Überblick über das Convolutional Neural Network Das Convolutional Neural Network ist ein Deep-Learning-Algorithmus, der eine Kombination aus mehreren Faltungsschichten, Pooling-Schichten und vollständig verbundenen Schichten verwendet, um Bildmerkmale zu lernen und zu klassifizieren. In der Faltungsschicht werden die lokalen Merkmale des Bildes durch Faltungsoperationen extrahiert und so die räumliche Korrelation im Bild erfasst. Die Pooling-Schicht reduziert den Rechenaufwand durch Reduzierung der Feature-Dimension und behält die Hauptfeatures bei. Die vollständig verbundene Schicht ist für die Zuordnung erlernter Merkmale und Beschriftungen zur Implementierung der Bildklassifizierung oder anderer Aufgaben verantwortlich. Das Design dieser Netzwerkstruktur macht das Faltungs-Neuronale Netzwerk für die Bildverarbeitung und -erkennung nützlich.

Das Siamese Neural Network ist eine einzigartige künstliche neuronale Netzwerkstruktur. Es besteht aus zwei identischen neuronalen Netzen mit denselben Parametern und Gewichten. Gleichzeitig teilen die beiden Netzwerke auch die gleichen Eingabedaten. Dieses Design wurde von Zwillingen inspiriert, da die beiden neuronalen Netze strukturell identisch sind. Das Prinzip des siamesischen neuronalen Netzwerks besteht darin, bestimmte Aufgaben wie Bildabgleich, Textabgleich und Gesichtserkennung durch den Vergleich der Ähnlichkeit oder des Abstands zwischen zwei Eingabedaten auszuführen. Während des Trainings versucht das Netzwerk, ähnliche Daten benachbarten Regionen und unterschiedliche Daten entfernten Regionen zuzuordnen. Auf diese Weise kann das Netzwerk lernen, verschiedene Daten zu klassifizieren oder abzugleichen, um entsprechende Ergebnisse zu erzielen

SqueezeNet ist ein kleiner und präziser Algorithmus, der eine gute Balance zwischen hoher Genauigkeit und geringer Komplexität schafft und sich daher ideal für mobile und eingebettete Systeme mit begrenzten Ressourcen eignet. Im Jahr 2016 schlugen Forscher von DeepScale, der University of California, Berkeley und der Stanford University SqueezeNet vor, ein kompaktes und effizientes Faltungs-Neuronales Netzwerk (CNN). In den letzten Jahren haben Forscher mehrere Verbesserungen an SqueezeNet vorgenommen, darunter SqueezeNetv1.1 und SqueezeNetv2.0. Verbesserungen in beiden Versionen erhöhen nicht nur die Genauigkeit, sondern senken auch die Rechenkosten. Genauigkeit von SqueezeNetv1.1 im ImageNet-Datensatz

Das kausale Faltungs-Neuronale Netzwerk ist ein spezielles Faltungs-Neuronales Netzwerk, das für Kausalitätsprobleme in Zeitreihendaten entwickelt wurde. Im Vergleich zu herkömmlichen Faltungs-Neuronalen Netzen bieten kausale Faltungs-Neuronale Netze einzigartige Vorteile bei der Beibehaltung der kausalen Beziehung von Zeitreihen und werden häufig bei der Vorhersage und Analyse von Zeitreihendaten verwendet. Die Kernidee des kausalen Faltungs-Neuronalen Netzwerks besteht darin, Kausalität in die Faltungsoperation einzuführen. Herkömmliche Faltungs-Neuronale Netze können gleichzeitig Daten vor und nach dem aktuellen Zeitpunkt wahrnehmen, bei der Vorhersage von Zeitreihen kann dies jedoch zu Informationsverlustproblemen führen. Da die Vorhersageergebnisse zum aktuellen Zeitpunkt durch die Daten zu zukünftigen Zeitpunkten beeinflusst werden. Das kausale Faltungs-Neuronale Netzwerk löst dieses Problem. Es kann nur den aktuellen Zeitpunkt und frühere Daten wahrnehmen, aber keine zukünftigen Daten.
