Heim Technologie-Peripheriegeräte KI Modellfreier Meta-Lernalgorithmus – MAML-Meta-Lernalgorithmus

Modellfreier Meta-Lernalgorithmus – MAML-Meta-Lernalgorithmus

Jan 22, 2024 pm 04:42 PM
机器学习 深度学习

Modellfreier Meta-Lernalgorithmus – MAML-Meta-Lernalgorithmus

Meta-Lernen bezieht sich auf den Prozess der Erforschung, wie man lernt, indem man gemeinsame Merkmale aus mehreren Aufgaben extrahiert, um sich schnell an neue Aufgaben anzupassen. Das zugehörige modellagnostische Meta-Lernen (MAML) ist ein Algorithmus, der Multitasking-Meta-Lernen ohne Vorkenntnisse durchführen kann. MAML lernt einen Modellinitialisierungsparameter durch iterative Optimierung mehrerer verwandter Aufgaben, sodass sich das Modell schnell an neue Aufgaben anpassen kann. Die Kernidee von MAML besteht darin, Modellparameter durch Gradientenabstieg anzupassen, um den Verlust bei neuen Aufgaben zu minimieren. Diese Methode ermöglicht dem Modell ein schnelles Lernen mit einer kleinen Anzahl von Stichproben und verfügt über eine gute Generalisierungsfähigkeit. MAML wird häufig bei verschiedenen maschinellen Lernaufgaben eingesetzt, beispielsweise bei der Bildklassifizierung, Spracherkennung und Robotersteuerung, und hat beeindruckende Ergebnisse erzielt. Durch Meta-Lernalgorithmen wie MAML besteht die Grundidee unseres

MAML darin, Meta-Lernen für eine große Anzahl von Aufgaben durchzuführen, um die Initialisierungsparameter eines Modells zu erhalten, damit das Modell schnell konvergieren kann neue Aufgaben. Konkret handelt es sich bei dem Modell in MAML um ein neuronales Netzwerk, das über den Gradientenabstiegsalgorithmus aktualisiert werden kann. Der Aktualisierungsprozess kann in zwei Schritte unterteilt werden: Zuerst wird ein Gradientenabstieg für einen großen Aufgabensatz durchgeführt, um die Aktualisierungsparameter jeder Aufgabe zu erhalten. Anschließend werden die Initialisierungsparameter des Modells durch gewichtete Mittelung dieser Aktualisierungsparameter ermittelt. Auf diese Weise kann sich das Modell durch eine kleine Anzahl von Gradientenabstiegsschritten für die neue Aufgabe schnell an die Eigenschaften der neuen Aufgabe anpassen und so eine schnelle Konvergenz erreichen.

Zuerst verwenden wir den Gradientenabstiegsalgorithmus für den Trainingssatz jeder Aufgabe, um die Parameter des Modells zu aktualisieren und die optimalen Parameter für die Aufgabe zu erhalten. Es ist zu beachten, dass wir den Gradientenabstieg nur für eine bestimmte Anzahl von Schritten durchgeführt und kein vollständiges Training durchgeführt haben. Denn das Ziel besteht darin, das Modell möglichst schnell an neue Aufgaben anzupassen, sodass nur ein geringer Schulungsaufwand erforderlich ist.

Für neue Aufgaben können wir die im ersten Schritt erhaltenen Parameter als Anfangsparameter verwenden, einen Gradientenabstieg für den Trainingssatz durchführen und die optimalen Parameter erhalten. Auf diese Weise können wir uns schneller an die Eigenschaften neuer Aufgaben anpassen und die Modellleistung verbessern.

Durch diese Methode können wir einen gemeinsamen Anfangsparameter erhalten, der es dem Modell ermöglicht, sich schnell an neue Aufgaben anzupassen. Darüber hinaus kann MAML auch durch Gradientenaktualisierungen optimiert werden, um die Leistung des Modells weiter zu verbessern.

Das Folgende ist ein Anwendungsbeispiel, bei dem MAML für Meta-Learning für Bildklassifizierungsaufgaben verwendet wird. Bei dieser Aufgabe müssen wir ein Modell trainieren, das aus einer kleinen Anzahl von Stichproben schnell lernen und klassifizieren und sich auch schnell an neue Aufgaben anpassen kann.

In diesem Beispiel können wir den Mini-ImageNet-Datensatz für Training und Tests verwenden. Der Datensatz enthält 600 Bildkategorien, jede Kategorie enthält 100 Trainingsbilder, 20 Validierungsbilder und 20 Testbilder. In diesem Beispiel können wir die 100 Trainingsbilder jeder Kategorie als Aufgabe betrachten. Wir müssen ein Modell entwerfen, damit das Modell mit einem kleinen Trainingsaufwand für jede Aufgabe trainiert werden kann und sich schnell an neue Aufgaben anpassen kann.

Das Folgende ist ein Codebeispiel des mit PyTorch implementierten MAML-Algorithmus:

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader

class MAML(nn.Module):
    def __init__(self, input_size, hidden_size, output_size, num_layers):
        super(MAML, self).__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
        self.num_layers = num_layers
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers)
        self.fc = nn.Linear(hidden_size, output_size)

    def forward(self, x, h):
        out, h = self.lstm(x, h)
        out = self.fc(out[:,-1,:])
        return out, h

def train(model, optimizer, train_data, num_updates=5):
    for i, task in enumerate(train_data):
        x, y = task
        x = x.unsqueeze(0)
        y = y.unsqueeze(0)
        h = None
        for j in range(num_updates):
            optimizer.zero_grad()
            outputs, h = model(x, h)
            loss = nn.CrossEntropyLoss()(outputs, y)
            loss.backward()
            optimizer.step()
        if i % 10 == 0:
            print("Training task {}: loss = {}".format(i, loss.item()))

def test(model, test_data):
    num_correct = 0
    num_total = 0
    for task in test_data:
        x, y = task
        x = x.unsqueeze(0)
        y = y.unsqueeze(0)
        h = None
        outputs, h = model(x, h)
        _, predicted = torch.max(outputs.data, 1)
        num_correct += (predicted == y).sum().item()
        num_total += y.size(1)
    acc = num_correct / num_total
    print("Test accuracy: {}".format(acc))

# Load the mini-ImageNet dataset
train_data = DataLoader(...)
test_data = DataLoader(...)

input_size = ...
hidden_size = ...
output_size = ...
num_layers = ...

# Initialize the MAML model
model = MAML(input_size, hidden_size, output_size, num_layers)

# Define the optimizer
optimizer = optim.Adam(model.parameters(), lr=0.001)

# Train the MAML model
for epoch in range(10):
    train(model, optimizer, train_data)
    test(model, test_data)
Nach dem Login kopieren

In diesem Code definieren wir zunächst ein MAML-Modell, das aus einer LSTM-Schicht und einer vollständig verbundenen Schicht besteht. Während des Trainingsprozesses behandeln wir zunächst den Datensatz jeder Aufgabe als Stichprobe und aktualisieren dann die Parameter des Modells durch mehrere Gradientenabstiege. Während des Testprozesses geben wir den Testdatensatz zur Vorhersage direkt in das Modell ein und berechnen die Genauigkeit.

Dieses Beispiel zeigt die Anwendung des MAML-Algorithmus bei Bildklassifizierungsaufgaben. Durch die Durchführung eines kleinen Trainingsumfangs am Trainingssatz wird ein gemeinsamer Initialisierungsparameter erhalten, sodass sich das Modell schnell an neue Aufgaben anpassen kann. Gleichzeitig kann der Algorithmus auch durch Gradientenaktualisierung optimiert werden, um die Leistung des Modells zu verbessern.

Das obige ist der detaillierte Inhalt vonModellfreier Meta-Lernalgorithmus – MAML-Meta-Lernalgorithmus. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

In diesem Artikel erfahren Sie mehr über SHAP: Modellerklärung für maschinelles Lernen In diesem Artikel erfahren Sie mehr über SHAP: Modellerklärung für maschinelles Lernen Jun 01, 2024 am 10:58 AM

In den Bereichen maschinelles Lernen und Datenwissenschaft stand die Interpretierbarkeit von Modellen schon immer im Fokus von Forschern und Praktikern. Mit der weit verbreiteten Anwendung komplexer Modelle wie Deep Learning und Ensemble-Methoden ist das Verständnis des Entscheidungsprozesses des Modells besonders wichtig geworden. Explainable AI|XAI trägt dazu bei, Vertrauen in maschinelle Lernmodelle aufzubauen, indem es die Transparenz des Modells erhöht. Eine Verbesserung der Modelltransparenz kann durch Methoden wie den weit verbreiteten Einsatz mehrerer komplexer Modelle sowie der Entscheidungsprozesse zur Erläuterung der Modelle erreicht werden. Zu diesen Methoden gehören die Analyse der Merkmalsbedeutung, die Schätzung des Modellvorhersageintervalls, lokale Interpretierbarkeitsalgorithmen usw. Die Merkmalswichtigkeitsanalyse kann den Entscheidungsprozess des Modells erklären, indem sie den Grad des Einflusses des Modells auf die Eingabemerkmale bewertet. Schätzung des Modellvorhersageintervalls

Jenseits von ORB-SLAM3! SL-SLAM: Szenen mit wenig Licht, starkem Jitter und schwacher Textur werden verarbeitet Jenseits von ORB-SLAM3! SL-SLAM: Szenen mit wenig Licht, starkem Jitter und schwacher Textur werden verarbeitet May 30, 2024 am 09:35 AM

Heute diskutieren wir darüber, wie Deep-Learning-Technologie die Leistung von visionbasiertem SLAM (Simultaneous Localization and Mapping) in komplexen Umgebungen verbessern kann. Durch die Kombination von Methoden zur Tiefenmerkmalsextraktion und Tiefenanpassung stellen wir hier ein vielseitiges hybrides visuelles SLAM-System vor, das die Anpassung in anspruchsvollen Szenarien wie schlechten Lichtverhältnissen, dynamischer Beleuchtung, schwach strukturierten Bereichen und starkem Jitter verbessern soll. Unser System unterstützt mehrere Modi, einschließlich erweiterter Monokular-, Stereo-, Monokular-Trägheits- und Stereo-Trägheitskonfigurationen. Darüber hinaus wird analysiert, wie visuelles SLAM mit Deep-Learning-Methoden kombiniert werden kann, um andere Forschungen zu inspirieren. Durch umfangreiche Experimente mit öffentlichen Datensätzen und selbst abgetasteten Daten demonstrieren wir die Überlegenheit von SL-SLAM in Bezug auf Positionierungsgenauigkeit und Tracking-Robustheit.

Identifizieren Sie Über- und Unteranpassung anhand von Lernkurven Identifizieren Sie Über- und Unteranpassung anhand von Lernkurven Apr 29, 2024 pm 06:50 PM

In diesem Artikel wird vorgestellt, wie Überanpassung und Unteranpassung in Modellen für maschinelles Lernen mithilfe von Lernkurven effektiv identifiziert werden können. Unteranpassung und Überanpassung 1. Überanpassung Wenn ein Modell mit den Daten übertrainiert ist, sodass es daraus Rauschen lernt, spricht man von einer Überanpassung des Modells. Ein überangepasstes Modell lernt jedes Beispiel so perfekt, dass es ein unsichtbares/neues Beispiel falsch klassifiziert. Für ein überangepasstes Modell erhalten wir einen perfekten/nahezu perfekten Trainingssatzwert und einen schrecklichen Validierungssatz-/Testwert. Leicht geändert: „Ursache der Überanpassung: Verwenden Sie ein komplexes Modell, um ein einfaches Problem zu lösen und Rauschen aus den Daten zu extrahieren. Weil ein kleiner Datensatz als Trainingssatz möglicherweise nicht die korrekte Darstellung aller Daten darstellt. 2. Unteranpassung Heru.“

Die Entwicklung der künstlichen Intelligenz in der Weltraumforschung und der Siedlungstechnik Die Entwicklung der künstlichen Intelligenz in der Weltraumforschung und der Siedlungstechnik Apr 29, 2024 pm 03:25 PM

In den 1950er Jahren wurde die künstliche Intelligenz (KI) geboren. Damals entdeckten Forscher, dass Maschinen menschenähnliche Aufgaben wie das Denken ausführen können. Später, in den 1960er Jahren, finanzierte das US-Verteidigungsministerium künstliche Intelligenz und richtete Labore für die weitere Entwicklung ein. Forscher finden Anwendungen für künstliche Intelligenz in vielen Bereichen, etwa bei der Erforschung des Weltraums und beim Überleben in extremen Umgebungen. Unter Weltraumforschung versteht man die Erforschung des Universums, das das gesamte Universum außerhalb der Erde umfasst. Der Weltraum wird als extreme Umgebung eingestuft, da sich seine Bedingungen von denen auf der Erde unterscheiden. Um im Weltraum zu überleben, müssen viele Faktoren berücksichtigt und Vorkehrungen getroffen werden. Wissenschaftler und Forscher glauben, dass die Erforschung des Weltraums und das Verständnis des aktuellen Zustands aller Dinge dazu beitragen können, die Funktionsweise des Universums zu verstehen und sich auf mögliche Umweltkrisen vorzubereiten

Implementierung von Algorithmen für maschinelles Lernen in C++: Häufige Herausforderungen und Lösungen Implementierung von Algorithmen für maschinelles Lernen in C++: Häufige Herausforderungen und Lösungen Jun 03, 2024 pm 01:25 PM

Zu den häufigsten Herausforderungen, mit denen Algorithmen für maschinelles Lernen in C++ konfrontiert sind, gehören Speicherverwaltung, Multithreading, Leistungsoptimierung und Wartbarkeit. Zu den Lösungen gehören die Verwendung intelligenter Zeiger, moderner Threading-Bibliotheken, SIMD-Anweisungen und Bibliotheken von Drittanbietern sowie die Einhaltung von Codierungsstilrichtlinien und die Verwendung von Automatisierungstools. Praktische Fälle zeigen, wie man die Eigen-Bibliothek nutzt, um lineare Regressionsalgorithmen zu implementieren, den Speicher effektiv zu verwalten und leistungsstarke Matrixoperationen zu nutzen.

Fünf Schulen des maschinellen Lernens, die Sie nicht kennen Fünf Schulen des maschinellen Lernens, die Sie nicht kennen Jun 05, 2024 pm 08:51 PM

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

Erklärbare KI: Erklären komplexer KI/ML-Modelle Erklärbare KI: Erklären komplexer KI/ML-Modelle Jun 03, 2024 pm 10:08 PM

Übersetzer |. Rezensiert von Li Rui |. Chonglou Modelle für künstliche Intelligenz (KI) und maschinelles Lernen (ML) werden heutzutage immer komplexer, und die von diesen Modellen erzeugten Ergebnisse sind eine Blackbox, die den Stakeholdern nicht erklärt werden kann. Explainable AI (XAI) zielt darauf ab, dieses Problem zu lösen, indem es Stakeholdern ermöglicht, die Funktionsweise dieser Modelle zu verstehen, sicherzustellen, dass sie verstehen, wie diese Modelle tatsächlich Entscheidungen treffen, und Transparenz in KI-Systemen, Vertrauen und Verantwortlichkeit zur Lösung dieses Problems gewährleistet. In diesem Artikel werden verschiedene Techniken der erklärbaren künstlichen Intelligenz (XAI) untersucht, um ihre zugrunde liegenden Prinzipien zu veranschaulichen. Mehrere Gründe, warum erklärbare KI von entscheidender Bedeutung ist. Vertrauen und Transparenz: Damit KI-Systeme allgemein akzeptiert und vertrauenswürdig sind, müssen Benutzer verstehen, wie Entscheidungen getroffen werden

Ist Flash Attention stabil? Meta und Harvard stellten fest, dass die Gewichtsabweichungen ihrer Modelle um Größenordnungen schwankten Ist Flash Attention stabil? Meta und Harvard stellten fest, dass die Gewichtsabweichungen ihrer Modelle um Größenordnungen schwankten May 30, 2024 pm 01:24 PM

MetaFAIR hat sich mit Harvard zusammengetan, um einen neuen Forschungsrahmen zur Optimierung der Datenverzerrung bereitzustellen, die bei der Durchführung groß angelegten maschinellen Lernens entsteht. Es ist bekannt, dass das Training großer Sprachmodelle oft Monate dauert und Hunderte oder sogar Tausende von GPUs verwendet. Am Beispiel des Modells LLaMA270B erfordert das Training insgesamt 1.720.320 GPU-Stunden. Das Training großer Modelle stellt aufgrund des Umfangs und der Komplexität dieser Arbeitsbelastungen einzigartige systemische Herausforderungen dar. In letzter Zeit haben viele Institutionen über Instabilität im Trainingsprozess beim Training generativer SOTA-KI-Modelle berichtet. Diese treten normalerweise in Form von Verlustspitzen auf. Beim PaLM-Modell von Google kam es beispielsweise während des Trainingsprozesses zu Instabilitäten. Numerische Voreingenommenheit ist die Hauptursache für diese Trainingsungenauigkeit.

See all articles