


Verbesserung der Datenannotationsmethoden für große Sprachmodelle (LLM)
Bei der Feinabstimmung großer Sprachmodelle (LLM) handelt es sich um die Umschulung eines vorab trainierten Modells mithilfe domänenspezifischer Daten, um es an eine bestimmte Aufgabe oder Domäne anzupassen. Die Datenannotation spielt eine entscheidende Rolle im Feinabstimmungsprozess und beinhaltet die Kennzeichnung von Daten mit spezifischen Informationen, die das Modell verstehen muss.
1. Prinzip der Datenannotation
Datenannotation soll maschinellen Lernmodellen helfen, die Daten besser zu verstehen und zu verarbeiten, indem den Daten Metadaten wie Beschriftungen, Tags usw. hinzugefügt werden. Bei der Feinabstimmung großer Sprachmodelle besteht das Prinzip der Datenannotation darin, Leitinformationen bereitzustellen, die dem Modell helfen, die Sprache und den Kontext einer bestimmten Domäne besser zu verstehen. Zu den gängigen Datenanmerkungsmethoden gehören Entitätserkennung, Sentimentanalyse und Beziehungsextraktion.
2. Methoden der Datenannotation
2.1 Entitätserkennung
Die Entitätserkennung ist eine Informationsextraktionstechnologie, deren Zweck darin besteht, benannte Entitäten und andere Arten von Entitäten aus Text zu identifizieren. Durch das Annotieren von Text ist das Modell in der Lage, Entitätsinformationen zu verstehen und zu extrahieren.
Methode zur Entitätsidentifizierung
Die BIO-Notation ist eine Methode zur Kennzeichnung des Standorts von Entitäten. Unter diesen repräsentiert B den Anfang der Entität, I das Innere der Entität und O die Nicht-Entität. Beispielsweise steht „B-PER“ für den Anfang des Namens einer Person, „I-PER“ für das Innere des Namens einer Person und „O“ für eine Nicht-Entität. Diese Methode kann uns helfen, Entitäten in Texten zu identifizieren, sie zu klassifizieren und zu analysieren.
② Entitätskategorie-Tag: Zusätzlich zu Standort-Tags können auch bestimmte Tags verwendet werden, um die Kategorie von Entitäten darzustellen, z. B. „LOC“ für Standort und „ORG“ für Organisation.
2.2 Sentiment-Analyse
Das Ziel der Sentiment-Analyse ist es, die emotionale Tendenz des Autors aus dem Text zu ermitteln, der in der Regel positive, negative und neutrale Emotionen umfasst. Das Prinzip besteht darin, die emotionalen Tendenzen im Text zu markieren, damit das Modell die emotionale Farbe hinter dem Text verstehen kann. Durch die Stimmungsanalyse können wir ein tieferes Verständnis der emotionalen Konnotation von Texten erlangen.
Methoden der Stimmungsanalyse
①Emotionale Tags: Durch Markieren der emotionalen Tendenz des Textes, wie „positiv“ (positiv), „negativ“ (negativ), „neutral“ (neutral) usw.
②Emotionsintensitätsmarkierung: Manchmal kann auch die Intensität der Emotion markiert werden, z. B. „stark positiv“, „stark negativ“, „neutral“ usw.
2.3 Beziehungsextraktion
Beziehungsextraktion bezieht sich auf das Extrahieren der Beziehungen zwischen Entitäten aus Text, um dem Modell zu helfen, die Verbindungen und Funktionen zwischen Entitäten zu verstehen. Das Prinzip besteht darin, die Assoziationen zwischen Entitäten im Text zu kommentieren, damit das Modell diese Beziehungen verstehen und dadurch die Informationsextraktion und Argumentation besser durchführen kann.
Methode zur Beziehungsextraktion
①Beziehungs-Tags: Verwenden Sie bestimmte Tags, um Beziehungen zwischen Entitäten darzustellen, z. B. „Subjekt-Objekt“, „Mitglied-Organisation“ usw. Diese Tags können dem Modell helfen, die verschiedenen Arten von Beziehungen zwischen Entitäten zu verstehen, sodass es besser auf bestimmte Aufgaben angewendet werden kann.
Die oben genannte Datenannotationsmethode spielt eine wichtige Rolle bei der Feinabstimmung großer Sprachmodelle. Diese Methoden versorgen das Modell mit umfangreichen Informationen, die es ihm ermöglichen, Textdaten besser zu verstehen und dadurch die Leistung und Effektivität des Modells bei domänenspezifischen Aufgaben zu verbessern.
3. Beispielbeschreibung
Angenommen, wir haben ein vorab trainiertes Sprachmodell und möchten es für eine Frage-Antwort-Aufgabe im medizinischen Bereich optimieren. Wir müssen Daten aus dem medizinischen Bereich mit Anmerkungen versehen, damit das Modell den medizinischen Kontext besser verstehen kann.
3.1 Entitätserkennung
Wir können Entitäten in medizinischen Texten mit Anmerkungen versehen, z. B. Krankheiten, Medikamente, medizinische Fachbegriffe usw. Beispielsweise können wir für den Satz „Der Patient wurde wegen einer Herzerkrankung ins Krankenhaus eingeliefert“ die BIO-Notation verwenden, um „Herzerkrankung“ als Kategorie „Krankheit“ zu kennzeichnen.
3.2 Stimmungsanalyse
Im medizinischen Bereich kann die Stimmungsanalyse verwendet werden, um die emotionalen Tendenzen von Patienten zu Behandlungsplänen, Einstellungen des Arztes usw. zu analysieren. Beispielsweise können wir den Satz „Der Patient hat Angst vor einer chirurgischen Behandlung“ als „negative Emotion“ bezeichnen.
3.3 Beziehungsextraktion
Bei medizinischen Fragen und Antworten ist es entscheidend, die Beziehung zwischen Fragen und Antworten zu identifizieren. Beispielsweise könnten wir für die Frage „Welche Symptome könnten darauf hinweisen, dass ein Patient an Diabetes leidet?“ den Zusammenhang zwischen „Symptomen“ und „Diabetes“ kennzeichnen.
Zusammenfassung
Datenanmerkungen können dem Modell durch Methoden wie Entitätserkennung, Stimmungsanalyse und Beziehungsextraktion mehr Kontextinformationen liefern, sodass es die Sprache und den Kontext einer bestimmten Domäne besser verstehen kann. Diese gekennzeichneten Daten können dem Modell dabei helfen, bestimmte Aufgaben genauer auszuführen. Durch effektive Datenanmerkungen kann sich das fein abgestimmte Modell besser an die Anforderungen bestimmter Bereiche anpassen und seine Leistung und Wirksamkeit in praktischen Anwendungen verbessern.
Das obige ist der detaillierte Inhalt vonVerbesserung der Datenannotationsmethoden für große Sprachmodelle (LLM). Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Bei der Bildanmerkung handelt es sich um das Verknüpfen von Beschriftungen oder beschreibenden Informationen mit Bildern, um dem Bildinhalt eine tiefere Bedeutung und Erklärung zu verleihen. Dieser Prozess ist entscheidend für maschinelles Lernen, das dabei hilft, Sehmodelle zu trainieren, um einzelne Elemente in Bildern genauer zu identifizieren. Durch das Hinzufügen von Anmerkungen zu Bildern kann der Computer die Semantik und den Kontext hinter den Bildern verstehen und so den Bildinhalt besser verstehen und analysieren. Die Bildanmerkung hat ein breites Anwendungsspektrum und deckt viele Bereiche ab, z. B. Computer Vision, Verarbeitung natürlicher Sprache und Diagramm-Vision-Modelle. Sie verfügt über ein breites Anwendungsspektrum, z. B. zur Unterstützung von Fahrzeugen bei der Identifizierung von Hindernissen auf der Straße und bei der Erkennung und Diagnose von Krankheiten durch medizinische Bilderkennung. In diesem Artikel werden hauptsächlich einige bessere Open-Source- und kostenlose Bildanmerkungstools empfohlen. 1.Makesens

In den Bereichen maschinelles Lernen und Datenwissenschaft stand die Interpretierbarkeit von Modellen schon immer im Fokus von Forschern und Praktikern. Mit der weit verbreiteten Anwendung komplexer Modelle wie Deep Learning und Ensemble-Methoden ist das Verständnis des Entscheidungsprozesses des Modells besonders wichtig geworden. Explainable AI|XAI trägt dazu bei, Vertrauen in maschinelle Lernmodelle aufzubauen, indem es die Transparenz des Modells erhöht. Eine Verbesserung der Modelltransparenz kann durch Methoden wie den weit verbreiteten Einsatz mehrerer komplexer Modelle sowie der Entscheidungsprozesse zur Erläuterung der Modelle erreicht werden. Zu diesen Methoden gehören die Analyse der Merkmalsbedeutung, die Schätzung des Modellvorhersageintervalls, lokale Interpretierbarkeitsalgorithmen usw. Die Merkmalswichtigkeitsanalyse kann den Entscheidungsprozess des Modells erklären, indem sie den Grad des Einflusses des Modells auf die Eingabemerkmale bewertet. Schätzung des Modellvorhersageintervalls

Laienhaft ausgedrückt ist ein Modell für maschinelles Lernen eine mathematische Funktion, die Eingabedaten einer vorhergesagten Ausgabe zuordnet. Genauer gesagt ist ein Modell für maschinelles Lernen eine mathematische Funktion, die Modellparameter anpasst, indem sie aus Trainingsdaten lernt, um den Fehler zwischen der vorhergesagten Ausgabe und der wahren Bezeichnung zu minimieren. Beim maschinellen Lernen gibt es viele Modelle, z. B. logistische Regressionsmodelle, Entscheidungsbaummodelle, Support-Vektor-Maschinenmodelle usw. Jedes Modell verfügt über seine anwendbaren Datentypen und Problemtypen. Gleichzeitig gibt es viele Gemeinsamkeiten zwischen verschiedenen Modellen oder es gibt einen verborgenen Weg für die Modellentwicklung. Am Beispiel des konnektionistischen Perzeptrons können wir es durch Erhöhen der Anzahl verborgener Schichten des Perzeptrons in ein tiefes neuronales Netzwerk umwandeln. Wenn dem Perzeptron eine Kernelfunktion hinzugefügt wird, kann es in eine SVM umgewandelt werden. Dieses hier

In diesem Artikel wird vorgestellt, wie Überanpassung und Unteranpassung in Modellen für maschinelles Lernen mithilfe von Lernkurven effektiv identifiziert werden können. Unteranpassung und Überanpassung 1. Überanpassung Wenn ein Modell mit den Daten übertrainiert ist, sodass es daraus Rauschen lernt, spricht man von einer Überanpassung des Modells. Ein überangepasstes Modell lernt jedes Beispiel so perfekt, dass es ein unsichtbares/neues Beispiel falsch klassifiziert. Für ein überangepasstes Modell erhalten wir einen perfekten/nahezu perfekten Trainingssatzwert und einen schrecklichen Validierungssatz-/Testwert. Leicht geändert: „Ursache der Überanpassung: Verwenden Sie ein komplexes Modell, um ein einfaches Problem zu lösen und Rauschen aus den Daten zu extrahieren. Weil ein kleiner Datensatz als Trainingssatz möglicherweise nicht die korrekte Darstellung aller Daten darstellt. 2. Unteranpassung Heru.“

In den 1950er Jahren wurde die künstliche Intelligenz (KI) geboren. Damals entdeckten Forscher, dass Maschinen menschenähnliche Aufgaben wie das Denken ausführen können. Später, in den 1960er Jahren, finanzierte das US-Verteidigungsministerium künstliche Intelligenz und richtete Labore für die weitere Entwicklung ein. Forscher finden Anwendungen für künstliche Intelligenz in vielen Bereichen, etwa bei der Erforschung des Weltraums und beim Überleben in extremen Umgebungen. Unter Weltraumforschung versteht man die Erforschung des Universums, das das gesamte Universum außerhalb der Erde umfasst. Der Weltraum wird als extreme Umgebung eingestuft, da sich seine Bedingungen von denen auf der Erde unterscheiden. Um im Weltraum zu überleben, müssen viele Faktoren berücksichtigt und Vorkehrungen getroffen werden. Wissenschaftler und Forscher glauben, dass die Erforschung des Weltraums und das Verständnis des aktuellen Zustands aller Dinge dazu beitragen können, die Funktionsweise des Universums zu verstehen und sich auf mögliche Umweltkrisen vorzubereiten

Zu den häufigsten Herausforderungen, mit denen Algorithmen für maschinelles Lernen in C++ konfrontiert sind, gehören Speicherverwaltung, Multithreading, Leistungsoptimierung und Wartbarkeit. Zu den Lösungen gehören die Verwendung intelligenter Zeiger, moderner Threading-Bibliotheken, SIMD-Anweisungen und Bibliotheken von Drittanbietern sowie die Einhaltung von Codierungsstilrichtlinien und die Verwendung von Automatisierungstools. Praktische Fälle zeigen, wie man die Eigen-Bibliothek nutzt, um lineare Regressionsalgorithmen zu implementieren, den Speicher effektiv zu verwalten und leistungsstarke Matrixoperationen zu nutzen.

Übersetzer |. Rezensiert von Li Rui |. Chonglou Modelle für künstliche Intelligenz (KI) und maschinelles Lernen (ML) werden heutzutage immer komplexer, und die von diesen Modellen erzeugten Ergebnisse sind eine Blackbox, die den Stakeholdern nicht erklärt werden kann. Explainable AI (XAI) zielt darauf ab, dieses Problem zu lösen, indem es Stakeholdern ermöglicht, die Funktionsweise dieser Modelle zu verstehen, sicherzustellen, dass sie verstehen, wie diese Modelle tatsächlich Entscheidungen treffen, und Transparenz in KI-Systemen, Vertrauen und Verantwortlichkeit zur Lösung dieses Problems gewährleistet. In diesem Artikel werden verschiedene Techniken der erklärbaren künstlichen Intelligenz (XAI) untersucht, um ihre zugrunde liegenden Prinzipien zu veranschaulichen. Mehrere Gründe, warum erklärbare KI von entscheidender Bedeutung ist. Vertrauen und Transparenz: Damit KI-Systeme allgemein akzeptiert und vertrauenswürdig sind, müssen Benutzer verstehen, wie Entscheidungen getroffen werden

MetaFAIR hat sich mit Harvard zusammengetan, um einen neuen Forschungsrahmen zur Optimierung der Datenverzerrung bereitzustellen, die bei der Durchführung groß angelegten maschinellen Lernens entsteht. Es ist bekannt, dass das Training großer Sprachmodelle oft Monate dauert und Hunderte oder sogar Tausende von GPUs verwendet. Am Beispiel des Modells LLaMA270B erfordert das Training insgesamt 1.720.320 GPU-Stunden. Das Training großer Modelle stellt aufgrund des Umfangs und der Komplexität dieser Arbeitsbelastungen einzigartige systemische Herausforderungen dar. In letzter Zeit haben viele Institutionen über Instabilität im Trainingsprozess beim Training generativer SOTA-KI-Modelle berichtet. Diese treten normalerweise in Form von Verlustspitzen auf. Beim PaLM-Modell von Google kam es beispielsweise während des Trainingsprozesses zu Instabilitäten. Numerische Voreingenommenheit ist die Hauptursache für diese Trainingsungenauigkeit.
