Heim > Technologie-Peripheriegeräte > KI > Anwendung häufig verwendeter Entfernungsmessmethoden im K-Nearest-Neighbor-Algorithmus

Anwendung häufig verwendeter Entfernungsmessmethoden im K-Nearest-Neighbor-Algorithmus

王林
Freigeben: 2024-01-22 20:54:10
nach vorne
659 Leute haben es durchsucht

Der k-Nearest-Neighbor-Algorithmus ist ein instanzbasierter oder speicherbasierter Algorithmus für maschinelles Lernen zur Klassifizierung und Erkennung. Sein Prinzip besteht darin, zu klassifizieren, indem die Daten des nächsten Nachbarn eines bestimmten Abfragepunkts ermittelt werden. Da der Algorithmus stark auf gespeicherten Trainingsdaten basiert, kann er als nichtparametrische Lernmethode betrachtet werden. Der

k-Nächste-Nachbarn-Algorithmus eignet sich zur Behandlung von Klassifizierungs- oder Regressionsproblemen. Bei Klassifizierungsproblemen arbeitet es mit diskreten Werten, während es bei Regressionsproblemen mit kontinuierlichen Werten arbeitet. Vor der Klassifizierung muss die Entfernung definiert werden, und es gibt viele Möglichkeiten für gängige Entfernungsmaße.

Euklidischer Abstand

Dies ist ein häufig verwendetes Abstandsmaß und funktioniert für Vektoren mit reellen Werten. Die Formel misst den Luftlinienabstand zwischen einem Abfragepunkt und einem anderen Punkt.

Anwendung häufig verwendeter Entfernungsmessmethoden im K-Nearest-Neighbor-Algorithmus

Euklidische Distanzformel

Manhattan-Distanz

Dies ist auch ein beliebtes Distanzmaß, das den absoluten Wert zwischen zwei Punkten misst.

Anwendung häufig verwendeter Entfernungsmessmethoden im K-Nearest-Neighbor-Algorithmus

Manhattan-Distanzformel

Minkowski-Distanz

Dieses Distanzmaß ist eine verallgemeinerte Form der euklidischen und Manhattan-Distanzmaße.

Anwendung häufig verwendeter Entfernungsmessmethoden im K-Nearest-Neighbor-Algorithmus

Minkowski-Distanzformel

Hamming-Distanz

Diese Technik wird oft mit booleschen oder String-Vektoren verwendet, um Punkte zu identifizieren, bei denen die Vektoren nicht übereinstimmen. Daher wird es auch Überlappungsmaß genannt.

Anwendung häufig verwendeter Entfernungsmessmethoden im K-Nearest-Neighbor-Algorithmus

Hamming-Abstandsformel

Bestimmen Sie die Bedeutung des Abstands des k-nächsten Nachbarn-Algorithmus

Um zu bestimmen, welche Datenpunkte einem bestimmten Abfragepunkt am nächsten liegen, muss der Abstand zwischen dem Abfragepunkt und anderen Datenpunkten berechnet werden. Diese Distanzmaße helfen bei der Bildung von Entscheidungsgrenzen, die Abfragepunkte in verschiedene Regionen unterteilen.

Das obige ist der detaillierte Inhalt vonAnwendung häufig verwendeter Entfernungsmessmethoden im K-Nearest-Neighbor-Algorithmus. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Verwandte Etiketten:
Quelle:163.com
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage