


Wie wichtig es ist, die Datenqualität beim maschinellen Lernen sicherzustellen und wie man sie bestätigt
Maschinelles Lernen ist in Organisationen jeder Größe zu einem wichtigen Werkzeug geworden, um Erkenntnisse zu gewinnen und datengesteuerte Entscheidungen zu treffen. Der Erfolg eines Machine-Learning-Projekts hängt jedoch stark von der Qualität der Daten ab. Eine schlechte Datenqualität führt zu ungenauen Vorhersagen und einer schlechten Modellleistung. Daher ist es von entscheidender Bedeutung, die Bedeutung der Datenqualität beim maschinellen Lernen zu verstehen und verschiedene Techniken einzusetzen, um qualitativ hochwertige Daten sicherzustellen.
Daten sind eine unverzichtbare und wichtige Ressource für maschinelles Lernen. Verschiedene Arten von Daten spielen ihre jeweilige Rolle bei der Modellkonstruktion. Verschiedene Datentypen wie kategoriale Daten, numerische Daten, Zeitreihendaten und Textdaten werden häufig verwendet. Die Verfügbarkeit qualitativ hochwertiger Daten ist ein Schlüsselfaktor für die Genauigkeit und Zuverlässigkeit von Modellen.
Wie stellt man die Datenqualität sicher?
Im Allgemeinen gibt es vier Schritte: Datenerfassung, Dateninjektion, Datenvorverarbeitung und Feature-Arbeit. Konkret:
Daten sammeln
Die Datenvorbereitung für maschinelles Lernen wird oft als ETL-Pipeline zum Extrahieren, Transformieren und Laden bezeichnet.
Extraktion: Erhalten Sie Daten aus verschiedenen Quellen, einschließlich Datenbanken, APIs oder gängigen Dateien wie CSV oder Excel. Daten können strukturiert oder unstrukturiert sein.
Transformation ist der Prozess der Anpassung von Daten an ein maschinelles Lernmodell. Dazu gehört die Bereinigung der Daten, um Fehler oder Inkonsistenzen zu beseitigen, die Standardisierung der Daten und deren Konvertierung in ein für das Modell akzeptables Format. Darüber hinaus ist auch Feature-Engineering erforderlich, um die Rohdaten in eine Reihe von Features als Eingabe für das Modell umzuwandeln.
Laden: Der letzte Schritt besteht darin, die konvertierten Daten an ein Ziel wie eine Datenbank, einen Datenspeicher oder ein Dateisystem hochzuladen oder zu laden. Die generierten Daten können zum Trainieren oder Testen von Modellen für maschinelles Lernen verwendet werden.
Nach dem Sammeln der Daten müssen Sie die Daten einfügen.
Dateninjektion
Um die Leistung des maschinellen Lernmodells zu verbessern, müssen wir neue Daten zum vorhandenen Datenserver hinzufügen, um die Datenbank zu aktualisieren und weitere unterschiedliche Daten hinzuzufügen. Dieser Prozess wird häufig mithilfe praktischer Tools automatisiert.
Zum Beispiel:
Batch-Einfügung: Daten stapelweise einfügen, normalerweise zu einem festen Zeitpunkt.
Echtzeitinjektion: Injizieren Sie Daten sofort nach der Generierung.
Stream-Injection: Daten werden in Form eines kontinuierlichen Streams injiziert. Es wird häufig in Echtzeit verwendet.
Die dritte Stufe der Datenpipeline ist die Datenvorverarbeitung.
Datenvorverarbeitung
Die Datenverarbeitung bereitet die Daten für die Verwendung in Modellen des maschinellen Lernens vor. Dies ist ein wichtiger Schritt beim maschinellen Lernen, da dadurch sichergestellt wird, dass die Daten in einem Format vorliegen, das das Modell verwenden kann, und dass etwaige Fehler oder Inkonsistenzen behoben werden .
Die Datenverarbeitung umfasst normalerweise eine Kombination aus Datenbereinigung, Datentransformation und Datenstandardisierung. Die genauen Schritte zur Datenverarbeitung hängen von der Art der Daten und dem von Ihnen verwendeten maschinellen Lernmodell ab.
Allgemeiner Ablauf der Datenverarbeitung:
Allgemeine Schritte:
1. Datenbereinigung: Entfernen Sie Fehler, Inkonsistenzen und Ausreißer aus der Datenbank.
2. Datenkonvertierung: Daten werden in eine Form konvertiert, die von Modellen des maschinellen Lernens verwendet werden kann, z. B. zur Konvertierung kategorialer Variablen in numerische Variablen.
3. Datennormalisierung: Skalierung von Daten innerhalb eines bestimmten Bereichs zwischen 0 und 1, was zur Verbesserung der Leistung einiger Modelle für maschinelles Lernen beiträgt.
4. Daten hinzufügen: Fügen Sie Änderungen oder Aktionen zu vorhandenen Datenpunkten hinzu, um neue Datenpunkte zu erstellen.
5. Merkmalsauswahl oder -extraktion: Identifizieren und wählen Sie grundlegende Merkmale aus den Daten aus, die als Eingabe für das maschinelle Lernmodell verwendet werden sollen.
6. Ausreißererkennung: Identifizieren und entfernen Sie Datenpunkte, die erheblich von großen Datenmengen abweichen. Ausreißer können Analyseergebnisse verändern und die Leistung von Modellen für maschinelles Lernen beeinträchtigen.
7. Duplikate erkennen: Identifizieren und entfernen Sie doppelte Datenpunkte. Doppelte Daten können zu ungenauen oder unzuverlässigen Ergebnissen führen und die Größe des Datensatzes erhöhen, was die Verarbeitung und Analyse erschwert.
8. Identifizieren Sie Trends: Finden Sie Muster und Trends in Ihren Daten, die Sie nutzen können, um zukünftige Vorhersagen zu treffen oder die Natur Ihrer Daten besser zu verstehen.
Die Datenverarbeitung ist beim maschinellen Lernen von entscheidender Bedeutung, da sie sicherstellt, dass die Daten in einer Form vorliegen, die das Modell verwenden kann, und Fehler oder Inkonsistenzen beseitigt. Dies verbessert die Modellleistung und Vorhersagegenauigkeit.
Die letzte Phase der Datenpipeline ist das Feature Engineering.
Feature Engineering
Feature Engineering wandelt Rohdaten in Features um, die als Eingabe für Modelle für maschinelles Lernen verwendet werden können. Dabei geht es darum, die kritischsten Daten aus dem Rohmaterial zu identifizieren, zu extrahieren und in ein Format umzuwandeln, das das Modell verwenden kann. Feature Engineering ist beim maschinellen Lernen von entscheidender Bedeutung, da es die Modellleistung erheblich beeinflussen kann.
Feature Engineering umfasst:
Feature-Extraktion: Extrahieren relevanter Informationen aus Rohdaten. Identifizieren Sie beispielsweise die wichtigsten Funktionen oder kombinieren Sie vorhandene Funktionen, um neue zu erstellen.
Attributänderung: Ändern Sie den Attributtyp, indem Sie beispielsweise eine kategoriale Variable in eine numerische Variable ändern oder die Daten so skalieren, dass sie in einen bestimmten Bereich passen.
Funktionsauswahl: Bestimmen Sie die grundlegenden Funktionen der Daten, die als Eingabe für das maschinelle Lernmodell verwendet werden sollen.
Dimensionalitätsreduzierung: Reduzieren Sie die Anzahl der Features in der Datenbank, indem Sie redundante oder irrelevante Features entfernen.
Daten hinzufügen: Fügen Sie Änderungen oder Aktionen zu vorhandenen Datenpunkten hinzu, um neue zu erstellen.
Feature Engineering erfordert ein gutes Verständnis der Daten, des zu lösenden Problems und des zu verwendenden maschinellen Lernalgorithmus. Dieser Prozess ist iterativ und experimentell und erfordert möglicherweise mehrere Iterationen, um den optimalen Funktionssatz zu finden, der die Modellleistung verbessert.
Das obige ist der detaillierte Inhalt vonWie wichtig es ist, die Datenqualität beim maschinellen Lernen sicherzustellen und wie man sie bestätigt. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Bei der Bildanmerkung handelt es sich um das Verknüpfen von Beschriftungen oder beschreibenden Informationen mit Bildern, um dem Bildinhalt eine tiefere Bedeutung und Erklärung zu verleihen. Dieser Prozess ist entscheidend für maschinelles Lernen, das dabei hilft, Sehmodelle zu trainieren, um einzelne Elemente in Bildern genauer zu identifizieren. Durch das Hinzufügen von Anmerkungen zu Bildern kann der Computer die Semantik und den Kontext hinter den Bildern verstehen und so den Bildinhalt besser verstehen und analysieren. Die Bildanmerkung hat ein breites Anwendungsspektrum und deckt viele Bereiche ab, z. B. Computer Vision, Verarbeitung natürlicher Sprache und Diagramm-Vision-Modelle. Sie verfügt über ein breites Anwendungsspektrum, z. B. zur Unterstützung von Fahrzeugen bei der Identifizierung von Hindernissen auf der Straße und bei der Erkennung und Diagnose von Krankheiten durch medizinische Bilderkennung. In diesem Artikel werden hauptsächlich einige bessere Open-Source- und kostenlose Bildanmerkungstools empfohlen. 1.Makesens

In den Bereichen maschinelles Lernen und Datenwissenschaft stand die Interpretierbarkeit von Modellen schon immer im Fokus von Forschern und Praktikern. Mit der weit verbreiteten Anwendung komplexer Modelle wie Deep Learning und Ensemble-Methoden ist das Verständnis des Entscheidungsprozesses des Modells besonders wichtig geworden. Explainable AI|XAI trägt dazu bei, Vertrauen in maschinelle Lernmodelle aufzubauen, indem es die Transparenz des Modells erhöht. Eine Verbesserung der Modelltransparenz kann durch Methoden wie den weit verbreiteten Einsatz mehrerer komplexer Modelle sowie der Entscheidungsprozesse zur Erläuterung der Modelle erreicht werden. Zu diesen Methoden gehören die Analyse der Merkmalsbedeutung, die Schätzung des Modellvorhersageintervalls, lokale Interpretierbarkeitsalgorithmen usw. Die Merkmalswichtigkeitsanalyse kann den Entscheidungsprozess des Modells erklären, indem sie den Grad des Einflusses des Modells auf die Eingabemerkmale bewertet. Schätzung des Modellvorhersageintervalls

Laienhaft ausgedrückt ist ein Modell für maschinelles Lernen eine mathematische Funktion, die Eingabedaten einer vorhergesagten Ausgabe zuordnet. Genauer gesagt ist ein Modell für maschinelles Lernen eine mathematische Funktion, die Modellparameter anpasst, indem sie aus Trainingsdaten lernt, um den Fehler zwischen der vorhergesagten Ausgabe und der wahren Bezeichnung zu minimieren. Beim maschinellen Lernen gibt es viele Modelle, z. B. logistische Regressionsmodelle, Entscheidungsbaummodelle, Support-Vektor-Maschinenmodelle usw. Jedes Modell verfügt über seine anwendbaren Datentypen und Problemtypen. Gleichzeitig gibt es viele Gemeinsamkeiten zwischen verschiedenen Modellen oder es gibt einen verborgenen Weg für die Modellentwicklung. Am Beispiel des konnektionistischen Perzeptrons können wir es durch Erhöhen der Anzahl verborgener Schichten des Perzeptrons in ein tiefes neuronales Netzwerk umwandeln. Wenn dem Perzeptron eine Kernelfunktion hinzugefügt wird, kann es in eine SVM umgewandelt werden. Dieses hier

In diesem Artikel wird vorgestellt, wie Überanpassung und Unteranpassung in Modellen für maschinelles Lernen mithilfe von Lernkurven effektiv identifiziert werden können. Unteranpassung und Überanpassung 1. Überanpassung Wenn ein Modell mit den Daten übertrainiert ist, sodass es daraus Rauschen lernt, spricht man von einer Überanpassung des Modells. Ein überangepasstes Modell lernt jedes Beispiel so perfekt, dass es ein unsichtbares/neues Beispiel falsch klassifiziert. Für ein überangepasstes Modell erhalten wir einen perfekten/nahezu perfekten Trainingssatzwert und einen schrecklichen Validierungssatz-/Testwert. Leicht geändert: „Ursache der Überanpassung: Verwenden Sie ein komplexes Modell, um ein einfaches Problem zu lösen und Rauschen aus den Daten zu extrahieren. Weil ein kleiner Datensatz als Trainingssatz möglicherweise nicht die korrekte Darstellung aller Daten darstellt. 2. Unteranpassung Heru.“

In den 1950er Jahren wurde die künstliche Intelligenz (KI) geboren. Damals entdeckten Forscher, dass Maschinen menschenähnliche Aufgaben wie das Denken ausführen können. Später, in den 1960er Jahren, finanzierte das US-Verteidigungsministerium künstliche Intelligenz und richtete Labore für die weitere Entwicklung ein. Forscher finden Anwendungen für künstliche Intelligenz in vielen Bereichen, etwa bei der Erforschung des Weltraums und beim Überleben in extremen Umgebungen. Unter Weltraumforschung versteht man die Erforschung des Universums, das das gesamte Universum außerhalb der Erde umfasst. Der Weltraum wird als extreme Umgebung eingestuft, da sich seine Bedingungen von denen auf der Erde unterscheiden. Um im Weltraum zu überleben, müssen viele Faktoren berücksichtigt und Vorkehrungen getroffen werden. Wissenschaftler und Forscher glauben, dass die Erforschung des Weltraums und das Verständnis des aktuellen Zustands aller Dinge dazu beitragen können, die Funktionsweise des Universums zu verstehen und sich auf mögliche Umweltkrisen vorzubereiten

Zu den häufigsten Herausforderungen, mit denen Algorithmen für maschinelles Lernen in C++ konfrontiert sind, gehören Speicherverwaltung, Multithreading, Leistungsoptimierung und Wartbarkeit. Zu den Lösungen gehören die Verwendung intelligenter Zeiger, moderner Threading-Bibliotheken, SIMD-Anweisungen und Bibliotheken von Drittanbietern sowie die Einhaltung von Codierungsstilrichtlinien und die Verwendung von Automatisierungstools. Praktische Fälle zeigen, wie man die Eigen-Bibliothek nutzt, um lineare Regressionsalgorithmen zu implementieren, den Speicher effektiv zu verwalten und leistungsstarke Matrixoperationen zu nutzen.

Übersetzer |. Rezensiert von Li Rui |. Chonglou Modelle für künstliche Intelligenz (KI) und maschinelles Lernen (ML) werden heutzutage immer komplexer, und die von diesen Modellen erzeugten Ergebnisse sind eine Blackbox, die den Stakeholdern nicht erklärt werden kann. Explainable AI (XAI) zielt darauf ab, dieses Problem zu lösen, indem es Stakeholdern ermöglicht, die Funktionsweise dieser Modelle zu verstehen, sicherzustellen, dass sie verstehen, wie diese Modelle tatsächlich Entscheidungen treffen, und Transparenz in KI-Systemen, Vertrauen und Verantwortlichkeit zur Lösung dieses Problems gewährleistet. In diesem Artikel werden verschiedene Techniken der erklärbaren künstlichen Intelligenz (XAI) untersucht, um ihre zugrunde liegenden Prinzipien zu veranschaulichen. Mehrere Gründe, warum erklärbare KI von entscheidender Bedeutung ist. Vertrauen und Transparenz: Damit KI-Systeme allgemein akzeptiert und vertrauenswürdig sind, müssen Benutzer verstehen, wie Entscheidungen getroffen werden

Das Anwendungspotenzial der Go-Sprache im Bereich des maschinellen Lernens ist enorm. Ihre Vorteile sind: Parallelität: Sie unterstützt die parallele Programmierung und eignet sich für rechenintensive Operationen bei maschinellen Lernaufgaben. Effizienz: Der Garbage Collector und die Sprachfunktionen sorgen dafür, dass der Code auch bei der Verarbeitung großer Datenmengen effizient ist. Benutzerfreundlichkeit: Die Syntax ist prägnant und erleichtert das Erlernen und Schreiben von Anwendungen für maschinelles Lernen.
