Anwendung von Empfehlungsalgorithmen beim maschinellen Lernen
Empfehlungsalgorithmen werden häufig in der E-Commerce- und Kurzvideobranche eingesetzt. Sie analysieren die Vorlieben und Interessen der Benutzer, filtern und verarbeiten umfangreiche Daten und stellen den Benutzern die relevantesten Informationen zur Verfügung. Dieser Algorithmus kann interessante Inhalte basierend auf den persönlichen Bedürfnissen des Benutzers genau empfehlen.
Der Empfehlungsalgorithmus ist eine Methode, mit der die Kompatibilität von Benutzern und Objekten sowie die Ähnlichkeit zwischen Benutzern und Elementen ermittelt wird, um Empfehlungen abzugeben. Dieser Algorithmus ist sowohl für die Benutzer als auch für die bereitgestellten Dienste sehr hilfreich. Mit diesen Lösungen können wir Qualität und Entscheidungsprozesse verbessern. Darüber hinaus können solche Algorithmen in großem Umfang verwendet werden, um eine Vielzahl von Artikeln zu empfehlen, darunter Filme, Bücher, Nachrichten, Artikel, Jobs und Werbung.
Empfehlungsalgorithmen werden hauptsächlich in drei Typen unterteilt:
- Inhaltsbasierte Filterung
- Kollaborative Filterung
- Hybrides Empfehlungssystem
Inhaltsbasierte Filterung
Diese Form des Empfehlungsalgorithmus basiert auf den Elementen, über die der Benutzer verfügt Der zuvor gesuchte Inhalt zeigt verwandte Elemente an. Die Attribute/Tags des Produkts, die dem Benutzer gefallen, werden in diesem Fall als Inhalt bezeichnet. Bei dieser Art von System werden Artikel mit Schlüsselwörtern versehen und das System durchsucht die Datenbank, um die Benutzerbedürfnisse zu verstehen, und empfiehlt schließlich verschiedene Produkte, die der Benutzer haben möchte.
Nehmen Sie als Beispiel den Filmempfehlungsalgorithmus. Jedem Film wird ein Genre zugewiesen, das auch als Tag oder Attribut bezeichnet wird. Gehen Sie davon aus, dass das System beim ersten Zugriff eines Benutzers auf das System keine Informationen über den Benutzer hat. Daher versucht das System zunächst, dem Benutzer beliebte Filme zu empfehlen oder Benutzerinformationen zu sammeln, indem es den Benutzer zum Ausfüllen eines Formulars auffordert. Im Laufe der Zeit können Benutzer bestimmte Filme bewerten, indem sie beispielsweise Actionfilmen eine gute Bewertung und Anime-Filmen eine niedrige Bewertung geben. Das Ergebnis ist, dass der Empfehlungsalgorithmus den Benutzern mehr Actionfilme empfiehlt.
Vorteile der inhaltsbasierten Filterung
- Da Empfehlungen auf einen einzelnen Benutzer zugeschnitten sind, benötigt das Modell keine Daten von anderen Benutzern.
- Erleichtern Sie die Skalierung.
- Das Modell kann die persönlichen Interessen des Benutzers erkennen und Artikel empfehlen, an denen nur wenige andere Benutzer interessiert sind.
Nachteile der inhaltsbasierten Filterung
- Da die Feature-Darstellung des Projekts von Hand entworfen wird, erfordert diese Technik viel Domänenwissen.
- Das Modell kann nur Empfehlungen aussprechen, die auf den bisherigen Interessen des Benutzers basieren.
Kollaboratives Filtern
Kooperationsbasiertes Filtern ist eine Methode, Verbrauchern neue Artikel basierend auf den Interessen und Vorlieben anderer ähnlicher Benutzer zu empfehlen. Beispielsweise kann das System beim Online-Einkauf neue Produkte empfehlen, basierend auf Informationen wie „Kunden, die dies gekauft haben, haben es auch gekauft.“ Dieser Ansatz ist der inhaltsbasierten Filterung überlegen, da er nicht auf der Interaktion des Benutzers mit Inhalten beruht, sondern Empfehlungen basierend auf dem historischen Verhalten des Benutzers abgibt. Durch die Analyse vergangener Daten können wir davon ausgehen, dass Nutzer in Zukunft an ähnlichen Artikeln interessiert sein werden. Dieser Ansatz vermeidet die Einschränkungen der inhaltsbasierten Filterung und liefert genauere Empfehlungen.
Die kollaborative Filterung kann in zwei Kategorien unterteilt werden:
Bei der benutzerbasierten kollaborativen Filterung identifiziert das System Benutzer mit ähnlichen Kaufpräferenzen und berechnet die Ähnlichkeit anhand ihres Kaufverhaltens.
Der artikelbasierte kollaborative Filteralgorithmus sucht nach anderen Artikeln, die dem Artikel ähneln, den der Verbraucher gekauft hat, und die Ähnlichkeit wird auf der Grundlage von Artikeln und nicht von Benutzern berechnet.
Vorteile der kollaborativen Filterung
- Es funktioniert gut, auch wenn die Datenmenge klein ist.
- Dieses Modell hilft Benutzern dabei, neues Interesse an einem bestimmten Artikel zu entdecken. Wenn andere Benutzer jedoch das gleiche Interesse haben, kann das Modell ihn dennoch empfehlen.
- Keine Domänenkenntnisse erforderlich.
Nachteile der kollaborativen Filterung
- Es kann keine neuen Dinge verarbeiten, da das Modell nicht auf neu hinzugefügte Objekte zur Datenbank trainiert wird.
- Die Bedeutung sekundärer Funktionen wird ignoriert.
Hybrider Empfehlungsalgorithmus
Verschiedene Arten von Empfehlungsalgorithmen haben ihre eigenen Vor- und Nachteile, sind jedoch bei alleiniger Verwendung begrenzt, insbesondere wenn mehrere Datenquellen für dasselbe Problem verwendet werden.
Parallel und sequentiell sind die gängigsten Entwurfsmethoden hybrider Empfehlungssysteme. In einer parallelen Architektur stellen mehrere Empfehlungsalgorithmen gleichzeitig Eingaben bereit und kombinieren ihre Ausgabeergebnisse, um ein einziges Empfehlungsergebnis zu erhalten. Die sequentielle Architektur übergibt Eingabeparameter an eine Empfehlungsmaschine, die Empfehlungsergebnisse generiert und diese dann an den nächsten Empfehlungsgeber in der Reihe weitergibt. Dieser Designansatz kann die Genauigkeit und Effizienz des Empfehlungssystems verbessern.
Vorteile hybrider Empfehlungssysteme
Hybridsysteme integrieren mehrere Modelle, um die Mängel eines Modells zu überwinden. Insgesamt werden dadurch die Nachteile der Verwendung eines einzelnen Modells gemildert und zuverlässigere Empfehlungen generiert. Dadurch erhalten Benutzer aussagekräftigere und maßgeschneiderte Empfehlungen.
Nachteile hybrider Empfehlungssysteme
Diese Modelle sind oft rechenintensiv und erfordern eine große Datenbank mit Bewertungen und anderen Kriterien, um auf dem neuesten Stand zu bleiben. Ohne aktuelle Metriken ist es schwierig, sich neu zu schulen und neue Empfehlungen mit aktualisierten Artikeln und Bewertungen verschiedener Benutzer bereitzustellen.
Alles in allem erleichtert der Empfehlungsalgorithmus den Benutzern die Auswahl ihrer bevorzugten Optionen und Interessengebiete, abgestimmt auf ihre Vorlieben. Derzeit werden Empfehlungsalgorithmen in vielen gängigen Anwendungen verwendet.
Das obige ist der detaillierte Inhalt vonAnwendung von Empfehlungsalgorithmen beim maschinellen Lernen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Bei der Bildanmerkung handelt es sich um das Verknüpfen von Beschriftungen oder beschreibenden Informationen mit Bildern, um dem Bildinhalt eine tiefere Bedeutung und Erklärung zu verleihen. Dieser Prozess ist entscheidend für maschinelles Lernen, das dabei hilft, Sehmodelle zu trainieren, um einzelne Elemente in Bildern genauer zu identifizieren. Durch das Hinzufügen von Anmerkungen zu Bildern kann der Computer die Semantik und den Kontext hinter den Bildern verstehen und so den Bildinhalt besser verstehen und analysieren. Die Bildanmerkung hat ein breites Anwendungsspektrum und deckt viele Bereiche ab, z. B. Computer Vision, Verarbeitung natürlicher Sprache und Diagramm-Vision-Modelle. Sie verfügt über ein breites Anwendungsspektrum, z. B. zur Unterstützung von Fahrzeugen bei der Identifizierung von Hindernissen auf der Straße und bei der Erkennung und Diagnose von Krankheiten durch medizinische Bilderkennung. In diesem Artikel werden hauptsächlich einige bessere Open-Source- und kostenlose Bildanmerkungstools empfohlen. 1.Makesens

In den Bereichen maschinelles Lernen und Datenwissenschaft stand die Interpretierbarkeit von Modellen schon immer im Fokus von Forschern und Praktikern. Mit der weit verbreiteten Anwendung komplexer Modelle wie Deep Learning und Ensemble-Methoden ist das Verständnis des Entscheidungsprozesses des Modells besonders wichtig geworden. Explainable AI|XAI trägt dazu bei, Vertrauen in maschinelle Lernmodelle aufzubauen, indem es die Transparenz des Modells erhöht. Eine Verbesserung der Modelltransparenz kann durch Methoden wie den weit verbreiteten Einsatz mehrerer komplexer Modelle sowie der Entscheidungsprozesse zur Erläuterung der Modelle erreicht werden. Zu diesen Methoden gehören die Analyse der Merkmalsbedeutung, die Schätzung des Modellvorhersageintervalls, lokale Interpretierbarkeitsalgorithmen usw. Die Merkmalswichtigkeitsanalyse kann den Entscheidungsprozess des Modells erklären, indem sie den Grad des Einflusses des Modells auf die Eingabemerkmale bewertet. Schätzung des Modellvorhersageintervalls

In diesem Artikel wird vorgestellt, wie Überanpassung und Unteranpassung in Modellen für maschinelles Lernen mithilfe von Lernkurven effektiv identifiziert werden können. Unteranpassung und Überanpassung 1. Überanpassung Wenn ein Modell mit den Daten übertrainiert ist, sodass es daraus Rauschen lernt, spricht man von einer Überanpassung des Modells. Ein überangepasstes Modell lernt jedes Beispiel so perfekt, dass es ein unsichtbares/neues Beispiel falsch klassifiziert. Für ein überangepasstes Modell erhalten wir einen perfekten/nahezu perfekten Trainingssatzwert und einen schrecklichen Validierungssatz-/Testwert. Leicht geändert: „Ursache der Überanpassung: Verwenden Sie ein komplexes Modell, um ein einfaches Problem zu lösen und Rauschen aus den Daten zu extrahieren. Weil ein kleiner Datensatz als Trainingssatz möglicherweise nicht die korrekte Darstellung aller Daten darstellt. 2. Unteranpassung Heru.“

Laienhaft ausgedrückt ist ein Modell für maschinelles Lernen eine mathematische Funktion, die Eingabedaten einer vorhergesagten Ausgabe zuordnet. Genauer gesagt ist ein Modell für maschinelles Lernen eine mathematische Funktion, die Modellparameter anpasst, indem sie aus Trainingsdaten lernt, um den Fehler zwischen der vorhergesagten Ausgabe und der wahren Bezeichnung zu minimieren. Beim maschinellen Lernen gibt es viele Modelle, z. B. logistische Regressionsmodelle, Entscheidungsbaummodelle, Support-Vektor-Maschinenmodelle usw. Jedes Modell verfügt über seine anwendbaren Datentypen und Problemtypen. Gleichzeitig gibt es viele Gemeinsamkeiten zwischen verschiedenen Modellen oder es gibt einen verborgenen Weg für die Modellentwicklung. Am Beispiel des konnektionistischen Perzeptrons können wir es durch Erhöhen der Anzahl verborgener Schichten des Perzeptrons in ein tiefes neuronales Netzwerk umwandeln. Wenn dem Perzeptron eine Kernelfunktion hinzugefügt wird, kann es in eine SVM umgewandelt werden. Dieses hier

In den 1950er Jahren wurde die künstliche Intelligenz (KI) geboren. Damals entdeckten Forscher, dass Maschinen menschenähnliche Aufgaben wie das Denken ausführen können. Später, in den 1960er Jahren, finanzierte das US-Verteidigungsministerium künstliche Intelligenz und richtete Labore für die weitere Entwicklung ein. Forscher finden Anwendungen für künstliche Intelligenz in vielen Bereichen, etwa bei der Erforschung des Weltraums und beim Überleben in extremen Umgebungen. Unter Weltraumforschung versteht man die Erforschung des Universums, das das gesamte Universum außerhalb der Erde umfasst. Der Weltraum wird als extreme Umgebung eingestuft, da sich seine Bedingungen von denen auf der Erde unterscheiden. Um im Weltraum zu überleben, müssen viele Faktoren berücksichtigt und Vorkehrungen getroffen werden. Wissenschaftler und Forscher glauben, dass die Erforschung des Weltraums und das Verständnis des aktuellen Zustands aller Dinge dazu beitragen können, die Funktionsweise des Universums zu verstehen und sich auf mögliche Umweltkrisen vorzubereiten

Zu den häufigsten Herausforderungen, mit denen Algorithmen für maschinelles Lernen in C++ konfrontiert sind, gehören Speicherverwaltung, Multithreading, Leistungsoptimierung und Wartbarkeit. Zu den Lösungen gehören die Verwendung intelligenter Zeiger, moderner Threading-Bibliotheken, SIMD-Anweisungen und Bibliotheken von Drittanbietern sowie die Einhaltung von Codierungsstilrichtlinien und die Verwendung von Automatisierungstools. Praktische Fälle zeigen, wie man die Eigen-Bibliothek nutzt, um lineare Regressionsalgorithmen zu implementieren, den Speicher effektiv zu verwalten und leistungsstarke Matrixoperationen zu nutzen.

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

MetaFAIR hat sich mit Harvard zusammengetan, um einen neuen Forschungsrahmen zur Optimierung der Datenverzerrung bereitzustellen, die bei der Durchführung groß angelegten maschinellen Lernens entsteht. Es ist bekannt, dass das Training großer Sprachmodelle oft Monate dauert und Hunderte oder sogar Tausende von GPUs verwendet. Am Beispiel des Modells LLaMA270B erfordert das Training insgesamt 1.720.320 GPU-Stunden. Das Training großer Modelle stellt aufgrund des Umfangs und der Komplexität dieser Arbeitsbelastungen einzigartige systemische Herausforderungen dar. In letzter Zeit haben viele Institutionen über Instabilität im Trainingsprozess beim Training generativer SOTA-KI-Modelle berichtet. Diese treten normalerweise in Form von Verlustspitzen auf. Beim PaLM-Modell von Google kam es beispielsweise während des Trainingsprozesses zu Instabilitäten. Numerische Voreingenommenheit ist die Hauptursache für diese Trainingsungenauigkeit.
