


Edge Intelligence: Definition, Anwendungen, Komponenten und Vorteile
Edge Intelligence ist eine Weiterentwicklung des Edge Computing. Es ermöglicht intelligenten Sensorknoten, Entscheidungen lokal zu treffen, mit der Option, Daten zur weiteren Filterung an ein Gateway und schließlich an die Cloud oder ein anderes Speichersystem zu senden. Edge Intelligence kombiniert künstliche Intelligenz und Edge Computing, sodass es nicht mehr auf die Cloud angewiesen ist, sondern Informationen direkt lokal erfasst und durch Echtzeit-Entscheidungsanwendungen schnell auf Änderungen in der Umgebung reagiert. Das Aufkommen dieser Technologie wird verschiedenen Branchen eine effizientere Datenverarbeitung und schnellere Entscheidungsmöglichkeiten bieten.
Edge Intelligence-basierte Anwendungen
Aspekte des maschinellen Lernens
Maschinelles Lernen (ML) ist der Kern der Edge Intelligence, indem es Muster und Anomalien in Datenströmen erkennt, um entsprechende Reaktionen auszulösen. ML verfügt über ein breites Anwendungsspektrum, darunter Fabriken, Smart Cities, Smart Grids, Augmented und Virtual Reality, vernetzte Fahrzeuge und Gesundheitssysteme. ML-Modelle werden in der Cloud trainiert und dann verwendet, um Edge-Geräte mit Intelligenz auszustatten.
Maschinelles Lernen ist ein effektiver Weg, um funktionale KI zu schaffen. ML-Techniken wie Entscheidungsbäume, Bayes'sche Netzwerke und K-Means-Clustering werden zur Klassifizierung und Vorhersage von KI-Entitäten verwendet. Deep Learning nutzt künstliche neuronale Netze, um Aufgaben wie Bildklassifizierung und Gesichtserkennung auszuführen.
Aspekte der künstlichen Intelligenz
Maschinelles Lernen ist in der Fertigung sehr beliebt geworden, während künstliche Intelligenz eher auf große Datenmengen angewendet wird, die aus Social-Media-Inhalten, Geschäftsinformatik und Online-Einkaufsaufzeichnungen gesammelt werden. Die Übertragung großer Datenmengen von IoT-Geräten zur Analyse in die Cloud ist teuer und ineffizient. Edge Intelligence überträgt Cloud-Dienste zur Verarbeitung vom Kern des Netzwerks an den Rand des Netzwerks. Der Edge-Knotensensor kann ein Smartphone oder ein anderes mobiles Gerät sein.
Dabei dürfte die Echtzeit-Videoanalyse eine sehr beliebte Anwendung für Edge Computing werden. Als auf Computer Vision basierende Anwendung erfasst die Echtzeit-Videoanalyse kontinuierlich hochauflösende Videos, die von Überwachungskameras aufgenommen wurden. Diese Anwendungen erfordern einen hohen Rechenaufwand, eine hohe Bandbreite und eine geringe Latenz zur Videoanalyse. Dies kann erreicht werden, indem die KI der Cloud auf Gateways ausgeweitet wird, die den Rand abdecken.
Vorteile von Edge Intelligence
1. Intelligenz mit geringer Latenz
Cloud Computing oder zentralisierte Systeme hatten schon immer Latenzprobleme. Das Erfassen von Daten und deren Übermittlung an einen zentralen Ort, die Verarbeitung und Beantwortung nehmen Zeit in Anspruch und ermöglichen keine Entscheidungsfindung in Echtzeit.
Der Hauptvorteil von Edge Intelligence besteht darin, die Latenz zu reduzieren und dadurch umsetzbare Ereignisse nahezu in Echtzeit auszuführen, wodurch die Gesamtsystemleistung verbessert wird. Dies befreit Cloud Computing und zentralisierte Systeme auch von der Arbeit mit rohen und irrelevanten Daten; sie können stattdessen hochstrukturierte, kontextreiche und umsetzbare Daten verarbeiten. Auf diese Weise wird die Latenz nicht nur am Edge, sondern im gesamten System verbessert.
2. Datenspeicherung mit geringer Bandbreite
In jedem IoT-Modell sind die Bandbreitenanforderungen für die Übertragung aller von Tausenden von Edge-Geräten gesammelten Daten sehr hoch. Mit zunehmender Anzahl dieser Geräte wird sie exponentiell wachsen. Der entfernte Standort verfügt möglicherweise nicht einmal über die Bandbreite, um Daten und Analysen vom Cloud-Server hin und her zu übertragen. Edge Intelligence hilft bei der Durchführung von Analysen und der Ergreifung erforderlicher Maßnahmen. Es kann Daten, Metadaten und Betriebsberichte speichern, die später gesammelt werden können.
3. Lineare Skalierbarkeit
Edge-Intelligence-Architektur kann linear skaliert werden, wenn die IoT-Bereitstellungen wachsen. Die Edge-Intelligence-Architektur nutzt die Rechenleistung der bereitgestellten Geräte. Es kann die schwere Arbeit der Ausführung von Deep-Learning- und Machine-Learning-Modellen übernehmen. Dies entlastet zentralisierte Cloud-Systeme, da Edge-Geräte die Hauptlast für die Ausführung intelligenter Funktionen tragen.
4. Reduzieren Sie die Betriebskosten
Da Edge Intelligence zeitkritische Daten lokal verarbeitet, kann viel Cloud-Speicherplatz eingespart werden, da inhaltsreiche Daten an zentrale Systeme bereitgestellt werden. Dies reduziert auch die Betriebskosten. Edge Intelligence steuert den Betrieb aller angeschlossenen IoT-Geräte in Echtzeit, sodass Fachleute Geräte effizienter bereitstellen und warten können.
Komponenten der Edge-Intelligence-Architektur
Die 4 Hauptkomponenten der Edge-Intelligence-Architektur: Edge-Caching, Edge-Training, Edge-Inferenz und Edge-Offloading.
1. Edge Caching
Edge Caching verarbeitet unter Edge Intelligence hauptsächlich eingehende verteilte Daten von Endbenutzern und ihrer Umgebung zu Edge-Geräten. Zusätzlich zu diesen Daten gehören auch vom Edge-Gerät selbst generierte Daten zum Edge-Cache. Darüber hinaus sammeln mobile Sensoren Umweltdaten, verarbeiten und speichern sie an angemessenen Orten, damit sie von Algorithmen der künstlichen Intelligenz zur Bereitstellung von Diensten für Benutzer verwendet werden können.
Dieses Modul ist für die vollständige Edge-Datenspeicherverwaltung verantwortlich.
2. Edge-Training
Bisher wurde das Training von KI-Modellen, die auf dem Intelligent Edge eingesetzt werden, größtenteils zentralisiert. Wir trainieren Deep-Learning-Modelle auf leistungsstarken zentralen Servern, die mit leistungsstarken GPUs ausgestattet sind, und portieren sie mithilfe ihrer kompatiblen Edge-SDKs und Laufzeitumgebungen auf Edge-Geräte. Dies ist nach wie vor die beste Möglichkeit, die Umschulung und Bereitstellung von Modellen auf Edge-Geräten mithilfe von Cloud-Konnektivität oder anderen E/A-Schnittstellen zu steuern. Aber für eine echte Edge-Intelligence-Architektur müssen wir Edge-Training implementieren.
Edge-Training bezieht sich auf den Prozess des Erlernens optimaler Werte von Gewichtungen und Bias für ein auf Daten basierendes Modell oder der Identifizierung versteckter Muster in am Edge erfassten Trainingsdaten.
3. Edge-Inferenz
Edge-Inferenz ist der Prozess der Bewertung der Leistung eines trainierten Modells oder Algorithmus anhand eines Testdatensatzes durch Berechnung der Ausgabe auf einem Edge-Gerät.
4. Edge Offloading
Edge Offloading ist ein weiteres wichtiges Merkmal von Edge Intelligence, bei dem Edge-Geräte bestimmte Aufgaben wie Edge-Training, Edge-Caching oder Edge-Inferenz auf andere Edge-Geräte im Netzwerk auslagern können. Es ähnelt dem verteilten Computing-Paradigma, bei dem Edge-Geräte intelligente Ökosysteme schaffen. Edge Offload ist eine abstrakte Serviceschicht über den anderen drei Komponenten. Daher ist es sehr wichtig, dass es auch eine ausfallsichere Strategie bietet, um die Mängel eigenständiger Edge-Geräte zu überwinden. Eine strukturierte und effektive Implementierung ermöglicht es Edge Intelligence, die verfügbaren Ressourcen in der Edge-Umgebung optimal zu nutzen.
Das obige ist der detaillierte Inhalt vonEdge Intelligence: Definition, Anwendungen, Komponenten und Vorteile. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Diese Seite berichtete am 27. Juni, dass Jianying eine von FaceMeng Technology, einer Tochtergesellschaft von ByteDance, entwickelte Videobearbeitungssoftware ist, die auf der Douyin-Plattform basiert und grundsätzlich kurze Videoinhalte für Benutzer der Plattform produziert Windows, MacOS und andere Betriebssysteme. Jianying kündigte offiziell die Aktualisierung seines Mitgliedschaftssystems an und führte ein neues SVIP ein, das eine Vielzahl von KI-Schwarztechnologien umfasst, wie z. B. intelligente Übersetzung, intelligente Hervorhebung, intelligente Verpackung, digitale menschliche Synthese usw. Preislich beträgt die monatliche Gebühr für das Clipping von SVIP 79 Yuan, die Jahresgebühr 599 Yuan (Hinweis auf dieser Website: entspricht 49,9 Yuan pro Monat), das fortlaufende Monatsabonnement beträgt 59 Yuan pro Monat und das fortlaufende Jahresabonnement beträgt 499 Yuan pro Jahr (entspricht 41,6 Yuan pro Monat). Darüber hinaus erklärte der Cut-Beamte auch, dass diejenigen, die den ursprünglichen VIP abonniert haben, das Benutzererlebnis verbessern sollen

Verbessern Sie die Produktivität, Effizienz und Genauigkeit der Entwickler, indem Sie eine abrufgestützte Generierung und ein semantisches Gedächtnis in KI-Codierungsassistenten integrieren. Übersetzt aus EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, Autor JanakiramMSV. Obwohl grundlegende KI-Programmierassistenten natürlich hilfreich sind, können sie oft nicht die relevantesten und korrektesten Codevorschläge liefern, da sie auf einem allgemeinen Verständnis der Softwaresprache und den gängigsten Mustern beim Schreiben von Software basieren. Der von diesen Coding-Assistenten generierte Code eignet sich zur Lösung der von ihnen zu lösenden Probleme, entspricht jedoch häufig nicht den Coding-Standards, -Konventionen und -Stilen der einzelnen Teams. Dabei entstehen häufig Vorschläge, die geändert oder verfeinert werden müssen, damit der Code in die Anwendung übernommen wird

Um mehr über AIGC zu erfahren, besuchen Sie bitte: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou unterscheidet sich von der traditionellen Fragendatenbank, die überall im Internet zu sehen ist erfordert einen Blick über den Tellerrand hinaus. Large Language Models (LLMs) gewinnen in den Bereichen Datenwissenschaft, generative künstliche Intelligenz (GenAI) und künstliche Intelligenz zunehmend an Bedeutung. Diese komplexen Algorithmen verbessern die menschlichen Fähigkeiten, treiben Effizienz und Innovation in vielen Branchen voran und werden zum Schlüssel für Unternehmen, um wettbewerbsfähig zu bleiben. LLM hat ein breites Anwendungsspektrum und kann in Bereichen wie der Verarbeitung natürlicher Sprache, der Textgenerierung, der Spracherkennung und Empfehlungssystemen eingesetzt werden. Durch das Lernen aus großen Datenmengen ist LLM in der Lage, Text zu generieren

Large Language Models (LLMs) werden auf riesigen Textdatenbanken trainiert und erwerben dort große Mengen an realem Wissen. Dieses Wissen wird in ihre Parameter eingebettet und kann dann bei Bedarf genutzt werden. Das Wissen über diese Modelle wird am Ende der Ausbildung „verdinglicht“. Am Ende des Vortrainings hört das Modell tatsächlich auf zu lernen. Richten Sie das Modell aus oder verfeinern Sie es, um zu erfahren, wie Sie dieses Wissen nutzen und natürlicher auf Benutzerfragen reagieren können. Aber manchmal reicht Modellwissen nicht aus, und obwohl das Modell über RAG auf externe Inhalte zugreifen kann, wird es als vorteilhaft angesehen, das Modell durch Feinabstimmung an neue Domänen anzupassen. Diese Feinabstimmung erfolgt mithilfe von Eingaben menschlicher Annotatoren oder anderer LLM-Kreationen, wobei das Modell auf zusätzliches Wissen aus der realen Welt trifft und dieses integriert

Herausgeber | Der Frage-Antwort-Datensatz (QA) von ScienceAI spielt eine entscheidende Rolle bei der Förderung der Forschung zur Verarbeitung natürlicher Sprache (NLP). Hochwertige QS-Datensätze können nicht nur zur Feinabstimmung von Modellen verwendet werden, sondern auch effektiv die Fähigkeiten großer Sprachmodelle (LLMs) bewerten, insbesondere die Fähigkeit, wissenschaftliche Erkenntnisse zu verstehen und zu begründen. Obwohl es derzeit viele wissenschaftliche QS-Datensätze aus den Bereichen Medizin, Chemie, Biologie und anderen Bereichen gibt, weisen diese Datensätze immer noch einige Mängel auf. Erstens ist das Datenformular relativ einfach, die meisten davon sind Multiple-Choice-Fragen. Sie sind leicht auszuwerten, schränken jedoch den Antwortauswahlbereich des Modells ein und können die Fähigkeit des Modells zur Beantwortung wissenschaftlicher Fragen nicht vollständig testen. Im Gegensatz dazu offene Fragen und Antworten

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

Herausgeber |. KX Im Bereich der Arzneimittelforschung und -entwicklung ist die genaue und effektive Vorhersage der Bindungsaffinität von Proteinen und Liganden für das Arzneimittelscreening und die Arzneimitteloptimierung von entscheidender Bedeutung. Aktuelle Studien berücksichtigen jedoch nicht die wichtige Rolle molekularer Oberflächeninformationen bei Protein-Ligand-Wechselwirkungen. Auf dieser Grundlage schlugen Forscher der Universität Xiamen ein neuartiges Framework zur multimodalen Merkmalsextraktion (MFE) vor, das erstmals Informationen über Proteinoberfläche, 3D-Struktur und -Sequenz kombiniert und einen Kreuzaufmerksamkeitsmechanismus verwendet, um verschiedene Modalitäten zu vergleichen Ausrichtung. Experimentelle Ergebnisse zeigen, dass diese Methode bei der Vorhersage von Protein-Ligand-Bindungsaffinitäten Spitzenleistungen erbringt. Darüber hinaus belegen Ablationsstudien die Wirksamkeit und Notwendigkeit der Proteinoberflächeninformation und der multimodalen Merkmalsausrichtung innerhalb dieses Rahmens. Verwandte Forschungen beginnen mit „S

Laut Nachrichten dieser Website vom 5. Juli veröffentlichte GlobalFoundries am 1. Juli dieses Jahres eine Pressemitteilung, in der die Übernahme der Power-Galliumnitrid (GaN)-Technologie und des Portfolios an geistigem Eigentum von Tagore Technology angekündigt wurde, in der Hoffnung, seinen Marktanteil in den Bereichen Automobile und Internet auszubauen Anwendungsbereiche für Rechenzentren mit künstlicher Intelligenz, um höhere Effizienz und bessere Leistung zu erforschen. Da sich Technologien wie generative künstliche Intelligenz (GenerativeAI) in der digitalen Welt weiterentwickeln, ist Galliumnitrid (GaN) zu einer Schlüssellösung für nachhaltiges und effizientes Energiemanagement, insbesondere in Rechenzentren, geworden. Auf dieser Website wurde die offizielle Ankündigung zitiert, dass sich das Ingenieurteam von Tagore Technology im Rahmen dieser Übernahme mit GF zusammenschließen wird, um die Galliumnitrid-Technologie weiterzuentwickeln. G
