


Die Rolle von Verlustfunktionen in neuronalen Netzen und Deep Learning
Die Verlustfunktion beim Deep Learning wird verwendet, um die Leistung neuronaler Netzwerkmodelle zu bewerten. In neuronalen Netzen gibt es zwei wesentliche mathematische Operationen, nämlich die Vorwärtsausbreitung und die Rückwärtsausbreitung mit Gradientenabstieg. Unabhängig von der Operation besteht das Ziel des neuronalen Netzwerks darin, die Verlustfunktion zu minimieren. Dies liegt daran, dass die Minimierung der Verlustfunktion automatisch dazu führt, dass das neuronale Netzwerkmodell genauere Vorhersagen trifft.
Oben haben wir zwei Arten von Zahlenoperationen neuronaler Netze kennengelernt. Vorwärtsausbreitung bezieht sich auf die Berechnung der Ausgabe anhand eines Eingabevektors, während Rückausbreitung und Gradientenabstieg verwendet werden, um die Gewichte und Verzerrungen des Netzwerks zu verbessern und so die Vorhersagegenauigkeit zu verbessern. Diese beiden Vorgänge arbeiten zusammen, damit sich das neuronale Netzwerk kontinuierlich selbst optimieren und genauere Vorhersagen treffen kann.
Im Allgemeinen lösen neuronale Netze Aufgaben, ohne explizit programmiert zu werden oder bestimmte Regeln zu verwenden. Dies liegt daran, dass sie ein allgemeines Ziel erreichen, indem sie eine Verlustfunktion minimieren, die nicht von der spezifischen Aufgabe oder Umgebung abhängt.
Daher benötigen wir ein tieferes Verständnis der Verlustfunktion, um eine geeignete Verlustfunktion zur Lösung verschiedener Probleme richtig auswählen zu können.
3 Haupttypen von Verlustfunktionen in neuronalen Netzen
- Mittlere quadratische Fehlerverlustfunktion
- Kreuzentropieverlustfunktion
- Mittlerer absoluter prozentualer Fehler
1. Mittlerer quadratischer Fehlerverlustfunktion (MSE) Der Die Verlustfunktion ist die Summe der quadrierten Differenzen zwischen den Einträgen im vorhergesagten Vektor und dem tatsächlichen Grundwahrheitsvektor.
2. Kreuzentropieverlustfunktion
Regression und Klassifizierung sind zwei beliebte Bereiche in Feedforward-Netzwerken. Bei Klassifizierungsaufgaben müssen wir uns mit probabilistischen Vorhersagen befassen, was erfordert, dass die Ausgabe des neuronalen Netzwerks im Bereich von 0 bis 1 liegt. Um den Fehler zwischen der vorhergesagten Wahrscheinlichkeit und der tatsächlichen Bezeichnung zu messen, verwenden wir die Kreuzentropieverlustfunktion.
3. Mittlerer absoluter prozentualer Fehler
Schließlich schauen wir uns die Verlustfunktion des mittleren absoluten prozentualen Fehlers (MAPE) an. Diese Verlustfunktion hat beim Deep Learning nicht viel Beachtung gefunden. In den meisten Fällen verwenden wir es, um die Leistung neuronaler Netze bei Bedarfsprognoseaufgaben zu messen.
Da Sie nun die Verlustfunktion kennen, erinnern Sie sich bitte an die folgenden Grundprinzipien bei der Verwendung der Verlustfunktion.
Grundsätze für die Verwendung von Verlustfunktionen
1. Die Verlustfunktion misst, wie gut das neuronale Netzwerkmodell eine bestimmte Aufgabe erfüllt. Um ein neuronales Netzwerk zu verbessern, müssen wir den Wert der Verlustfunktion während des Backpropagation-Schritts minimieren.
2. Wenn Sie neuronale Netze zur Vorhersage von Wahrscheinlichkeiten verwenden, verwenden Sie bei Klassifizierungsaufgaben nur die Kreuzentropieverlustfunktion.
3. Wenn Sie möchten, dass das Netzwerk bei Regressionsaufgaben kontinuierliche Zahlen vorhersagt, müssen Sie die Funktion des mittleren quadratischen Fehlerverlusts verwenden.
4. Wir verwenden die durchschnittliche absolute prozentuale Fehlerverlustfunktion während der Bedarfsprognose, um uns während des Trainings auf die Leistung des Netzwerks zu konzentrieren.
Das obige ist der detaillierte Inhalt vonDie Rolle von Verlustfunktionen in neuronalen Netzen und Deep Learning. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



In den Bereichen maschinelles Lernen und Datenwissenschaft stand die Interpretierbarkeit von Modellen schon immer im Fokus von Forschern und Praktikern. Mit der weit verbreiteten Anwendung komplexer Modelle wie Deep Learning und Ensemble-Methoden ist das Verständnis des Entscheidungsprozesses des Modells besonders wichtig geworden. Explainable AI|XAI trägt dazu bei, Vertrauen in maschinelle Lernmodelle aufzubauen, indem es die Transparenz des Modells erhöht. Eine Verbesserung der Modelltransparenz kann durch Methoden wie den weit verbreiteten Einsatz mehrerer komplexer Modelle sowie der Entscheidungsprozesse zur Erläuterung der Modelle erreicht werden. Zu diesen Methoden gehören die Analyse der Merkmalsbedeutung, die Schätzung des Modellvorhersageintervalls, lokale Interpretierbarkeitsalgorithmen usw. Die Merkmalswichtigkeitsanalyse kann den Entscheidungsprozess des Modells erklären, indem sie den Grad des Einflusses des Modells auf die Eingabemerkmale bewertet. Schätzung des Modellvorhersageintervalls

In diesem Artikel wird vorgestellt, wie Überanpassung und Unteranpassung in Modellen für maschinelles Lernen mithilfe von Lernkurven effektiv identifiziert werden können. Unteranpassung und Überanpassung 1. Überanpassung Wenn ein Modell mit den Daten übertrainiert ist, sodass es daraus Rauschen lernt, spricht man von einer Überanpassung des Modells. Ein überangepasstes Modell lernt jedes Beispiel so perfekt, dass es ein unsichtbares/neues Beispiel falsch klassifiziert. Für ein überangepasstes Modell erhalten wir einen perfekten/nahezu perfekten Trainingssatzwert und einen schrecklichen Validierungssatz-/Testwert. Leicht geändert: „Ursache der Überanpassung: Verwenden Sie ein komplexes Modell, um ein einfaches Problem zu lösen und Rauschen aus den Daten zu extrahieren. Weil ein kleiner Datensatz als Trainingssatz möglicherweise nicht die korrekte Darstellung aller Daten darstellt. 2. Unteranpassung Heru.“

Heute diskutieren wir darüber, wie Deep-Learning-Technologie die Leistung von visionbasiertem SLAM (Simultaneous Localization and Mapping) in komplexen Umgebungen verbessern kann. Durch die Kombination von Methoden zur Tiefenmerkmalsextraktion und Tiefenanpassung stellen wir hier ein vielseitiges hybrides visuelles SLAM-System vor, das die Anpassung in anspruchsvollen Szenarien wie schlechten Lichtverhältnissen, dynamischer Beleuchtung, schwach strukturierten Bereichen und starkem Jitter verbessern soll. Unser System unterstützt mehrere Modi, einschließlich erweiterter Monokular-, Stereo-, Monokular-Trägheits- und Stereo-Trägheitskonfigurationen. Darüber hinaus wird analysiert, wie visuelles SLAM mit Deep-Learning-Methoden kombiniert werden kann, um andere Forschungen zu inspirieren. Durch umfangreiche Experimente mit öffentlichen Datensätzen und selbst abgetasteten Daten demonstrieren wir die Überlegenheit von SL-SLAM in Bezug auf Positionierungsgenauigkeit und Tracking-Robustheit.

In den 1950er Jahren wurde die künstliche Intelligenz (KI) geboren. Damals entdeckten Forscher, dass Maschinen menschenähnliche Aufgaben wie das Denken ausführen können. Später, in den 1960er Jahren, finanzierte das US-Verteidigungsministerium künstliche Intelligenz und richtete Labore für die weitere Entwicklung ein. Forscher finden Anwendungen für künstliche Intelligenz in vielen Bereichen, etwa bei der Erforschung des Weltraums und beim Überleben in extremen Umgebungen. Unter Weltraumforschung versteht man die Erforschung des Universums, das das gesamte Universum außerhalb der Erde umfasst. Der Weltraum wird als extreme Umgebung eingestuft, da sich seine Bedingungen von denen auf der Erde unterscheiden. Um im Weltraum zu überleben, müssen viele Faktoren berücksichtigt und Vorkehrungen getroffen werden. Wissenschaftler und Forscher glauben, dass die Erforschung des Weltraums und das Verständnis des aktuellen Zustands aller Dinge dazu beitragen können, die Funktionsweise des Universums zu verstehen und sich auf mögliche Umweltkrisen vorzubereiten

Zu den häufigsten Herausforderungen, mit denen Algorithmen für maschinelles Lernen in C++ konfrontiert sind, gehören Speicherverwaltung, Multithreading, Leistungsoptimierung und Wartbarkeit. Zu den Lösungen gehören die Verwendung intelligenter Zeiger, moderner Threading-Bibliotheken, SIMD-Anweisungen und Bibliotheken von Drittanbietern sowie die Einhaltung von Codierungsstilrichtlinien und die Verwendung von Automatisierungstools. Praktische Fälle zeigen, wie man die Eigen-Bibliothek nutzt, um lineare Regressionsalgorithmen zu implementieren, den Speicher effektiv zu verwalten und leistungsstarke Matrixoperationen zu nutzen.

Übersetzer |. Rezensiert von Li Rui |. Chonglou Modelle für künstliche Intelligenz (KI) und maschinelles Lernen (ML) werden heutzutage immer komplexer, und die von diesen Modellen erzeugten Ergebnisse sind eine Blackbox, die den Stakeholdern nicht erklärt werden kann. Explainable AI (XAI) zielt darauf ab, dieses Problem zu lösen, indem es Stakeholdern ermöglicht, die Funktionsweise dieser Modelle zu verstehen, sicherzustellen, dass sie verstehen, wie diese Modelle tatsächlich Entscheidungen treffen, und Transparenz in KI-Systemen, Vertrauen und Verantwortlichkeit zur Lösung dieses Problems gewährleistet. In diesem Artikel werden verschiedene Techniken der erklärbaren künstlichen Intelligenz (XAI) untersucht, um ihre zugrunde liegenden Prinzipien zu veranschaulichen. Mehrere Gründe, warum erklärbare KI von entscheidender Bedeutung ist. Vertrauen und Transparenz: Damit KI-Systeme allgemein akzeptiert und vertrauenswürdig sind, müssen Benutzer verstehen, wie Entscheidungen getroffen werden

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

MetaFAIR hat sich mit Harvard zusammengetan, um einen neuen Forschungsrahmen zur Optimierung der Datenverzerrung bereitzustellen, die bei der Durchführung groß angelegten maschinellen Lernens entsteht. Es ist bekannt, dass das Training großer Sprachmodelle oft Monate dauert und Hunderte oder sogar Tausende von GPUs verwendet. Am Beispiel des Modells LLaMA270B erfordert das Training insgesamt 1.720.320 GPU-Stunden. Das Training großer Modelle stellt aufgrund des Umfangs und der Komplexität dieser Arbeitsbelastungen einzigartige systemische Herausforderungen dar. In letzter Zeit haben viele Institutionen über Instabilität im Trainingsprozess beim Training generativer SOTA-KI-Modelle berichtet. Diese treten normalerweise in Form von Verlustspitzen auf. Beim PaLM-Modell von Google kam es beispielsweise während des Trainingsprozesses zu Instabilitäten. Numerische Voreingenommenheit ist die Hauptursache für diese Trainingsungenauigkeit.
