Vorhersage von Zeitintervallen beim maschinellen Lernen
Beim maschinellen Lernen bezieht sich das Vorhersageintervall auf eine Modellvorhersage, die einen Intervallbereich angibt, der die Wahrscheinlichkeit des zukünftigen wahren Werts enthält. Im Gegensatz dazu liefert die Punktschätzung nur einen numerischen Wert als Vorhersageergebnis und ignoriert die Unsicherheit der Vorhersage. Daher ist das Vorhersageintervall in praktischen Anwendungen nützlicher. Das Vorhersageintervall gibt uns ein vollständigeres Bild der Vorhersagekraft eines Modells, da es die Modellunsicherheit berücksichtigt und einen Bereich und nicht nur eine Punktschätzung liefert. Dieser Bereich kann mehr Informationen liefern, uns dabei helfen, die Zuverlässigkeit des Modells zu bewerten und bei tatsächlichen Entscheidungen genauere Urteile zu fällen. Daher wird das Vorhersageintervall beim maschinellen Lernen häufiger verwendet und kann den tatsächlichen Bedarf besser erfüllen.
Prognoseintervalle spielen eine Schlüsselrolle bei Regressionsproblemen und Zeitreihenanalysen. Bei einem Regressionsproblem wird bei gegebener Eingabevariable ein Ausgabewert vorhergesagt und ein Bereich angegeben, der die Wahrscheinlichkeit des vorhergesagten Werts enthält. Bei der Zeitreihenanalyse bezieht sich das Vorhersageintervall auf einen Intervallbereich für zukünftige Zeitpunkte, der die Wahrscheinlichkeit des zukünftigen wahren Werts enthält. Durch die Verwendung von Prognoseintervallen können wir genauere Prognoseergebnisse erzielen und ein tieferes Verständnis für die Zuverlässigkeit der Prognose gewinnen.
Die Berechnung des Vorhersageintervalls ähnelt in der Regel der Berechnung des Konfidenzintervalls. Bei einem Regressionsproblem wird bei gegebenem Eingabevektor x das Modell verwendet, um die Ausgabe y_hat zu schätzen. Das Vorhersageintervall kann mit der folgenden Formel berechnet werden:
PI(x)=[y_hat-z_alpha/2*sigma_hat,y_hat+z_alpha/2*sigma_hat]
“z_alpha/2 ist α/ des Standardnormalverteilung 2 Quantile, α ist das Konfidenzniveau und sigma_hat ist die Standardabweichung des Residuums. Dieses Intervall stellt die Wahrscheinlichkeit dar, dass der wahre y-Wert bei einem bestimmten Konfidenzniveau innerhalb dieses Intervalls liegt Analyse: Das Vorhersageintervall wird auf ähnliche Weise wie bei Regressionsproblemen berechnet. Wir können ein Zeitreihenmodell verwenden, um zukünftige Werte vorherzusagen und die Standardabweichung des Prognosefehlers zu berechnen. Das Vorhersageintervall kann mit der folgenden Formel berechnet werden:
PI(t+1)=[y_hat(t+1)-z_alpha/2*sigma_hat(t+1),y_hat(t+1)+z_alpha/ 2*sigma_hat (t+1)]
wobei y_hat(t+1) der vorhergesagte Wert zum Zeitpunkt t+1 ist, sigma_hat(t+1) die Standardabweichung des Vorhersagefehlers zum Zeitpunkt t+1 , z_alpha/2 ist das α/2-Quantil der Standardnormalverteilung und α ist das Konfidenzniveau. Dieses Intervall stellt die Wahrscheinlichkeit dar, dass der wahre Wert von y zum Zeitpunkt t+1 bei einem gegebenen Konfidenzniveau in dieses Intervall fällt.
Die Anwendung des Vorhersageintervalls ist sehr breit. Im Finanzbereich müssen Anleger häufig die künftige Bandbreite der Veränderungen von Aktienkursen oder Wechselkursen verstehen, und Prognoseintervalle können ihnen dabei helfen, fundierte Anlageentscheidungen zu treffen. Im medizinischen Bereich können Vorhersageintervalle verwendet werden, um die Lebenserwartung und Krankheitsrisiken von Patienten vorherzusagen, und Ärzte können auf der Grundlage der Vorhersageintervalle Behandlungspläne formulieren. Im technischen Bereich können Vorhersageintervalle zur Vorhersage von Geräteausfallraten und Reparaturkosten verwendet werden und Unternehmen bei der Planung von Reparatur- und Wartungsplänen unterstützen.
Es ist zu beachten, dass bei der Berechnung des Vorhersageintervalls die Wahl des Konfidenzniveaus sehr wichtig ist. Wenn das Konfidenzniveau zu hoch ist, wird das Vorhersageintervall entspannter, was dazu führt, dass die Unsicherheit der Vorhersageergebnisse stark übertrieben wird. Wenn das Konfidenzniveau zu niedrig ist, wird das Vorhersageintervall enger und die Unsicherheit der Modellvorhersage erhöht kann ignoriert werden. Daher ist es notwendig, ein geeignetes Konfidenzniveau basierend auf spezifischen Anwendungsszenarien und Datenmerkmalen auszuwählen.
Das obige ist der detaillierte Inhalt vonVorhersage von Zeitintervallen beim maschinellen Lernen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Bei der Bildanmerkung handelt es sich um das Verknüpfen von Beschriftungen oder beschreibenden Informationen mit Bildern, um dem Bildinhalt eine tiefere Bedeutung und Erklärung zu verleihen. Dieser Prozess ist entscheidend für maschinelles Lernen, das dabei hilft, Sehmodelle zu trainieren, um einzelne Elemente in Bildern genauer zu identifizieren. Durch das Hinzufügen von Anmerkungen zu Bildern kann der Computer die Semantik und den Kontext hinter den Bildern verstehen und so den Bildinhalt besser verstehen und analysieren. Die Bildanmerkung hat ein breites Anwendungsspektrum und deckt viele Bereiche ab, z. B. Computer Vision, Verarbeitung natürlicher Sprache und Diagramm-Vision-Modelle. Sie verfügt über ein breites Anwendungsspektrum, z. B. zur Unterstützung von Fahrzeugen bei der Identifizierung von Hindernissen auf der Straße und bei der Erkennung und Diagnose von Krankheiten durch medizinische Bilderkennung. In diesem Artikel werden hauptsächlich einige bessere Open-Source- und kostenlose Bildanmerkungstools empfohlen. 1.Makesens

In den Bereichen maschinelles Lernen und Datenwissenschaft stand die Interpretierbarkeit von Modellen schon immer im Fokus von Forschern und Praktikern. Mit der weit verbreiteten Anwendung komplexer Modelle wie Deep Learning und Ensemble-Methoden ist das Verständnis des Entscheidungsprozesses des Modells besonders wichtig geworden. Explainable AI|XAI trägt dazu bei, Vertrauen in maschinelle Lernmodelle aufzubauen, indem es die Transparenz des Modells erhöht. Eine Verbesserung der Modelltransparenz kann durch Methoden wie den weit verbreiteten Einsatz mehrerer komplexer Modelle sowie der Entscheidungsprozesse zur Erläuterung der Modelle erreicht werden. Zu diesen Methoden gehören die Analyse der Merkmalsbedeutung, die Schätzung des Modellvorhersageintervalls, lokale Interpretierbarkeitsalgorithmen usw. Die Merkmalswichtigkeitsanalyse kann den Entscheidungsprozess des Modells erklären, indem sie den Grad des Einflusses des Modells auf die Eingabemerkmale bewertet. Schätzung des Modellvorhersageintervalls

Laienhaft ausgedrückt ist ein Modell für maschinelles Lernen eine mathematische Funktion, die Eingabedaten einer vorhergesagten Ausgabe zuordnet. Genauer gesagt ist ein Modell für maschinelles Lernen eine mathematische Funktion, die Modellparameter anpasst, indem sie aus Trainingsdaten lernt, um den Fehler zwischen der vorhergesagten Ausgabe und der wahren Bezeichnung zu minimieren. Beim maschinellen Lernen gibt es viele Modelle, z. B. logistische Regressionsmodelle, Entscheidungsbaummodelle, Support-Vektor-Maschinenmodelle usw. Jedes Modell verfügt über seine anwendbaren Datentypen und Problemtypen. Gleichzeitig gibt es viele Gemeinsamkeiten zwischen verschiedenen Modellen oder es gibt einen verborgenen Weg für die Modellentwicklung. Am Beispiel des konnektionistischen Perzeptrons können wir es durch Erhöhen der Anzahl verborgener Schichten des Perzeptrons in ein tiefes neuronales Netzwerk umwandeln. Wenn dem Perzeptron eine Kernelfunktion hinzugefügt wird, kann es in eine SVM umgewandelt werden. Dieses hier

In den 1950er Jahren wurde die künstliche Intelligenz (KI) geboren. Damals entdeckten Forscher, dass Maschinen menschenähnliche Aufgaben wie das Denken ausführen können. Später, in den 1960er Jahren, finanzierte das US-Verteidigungsministerium künstliche Intelligenz und richtete Labore für die weitere Entwicklung ein. Forscher finden Anwendungen für künstliche Intelligenz in vielen Bereichen, etwa bei der Erforschung des Weltraums und beim Überleben in extremen Umgebungen. Unter Weltraumforschung versteht man die Erforschung des Universums, das das gesamte Universum außerhalb der Erde umfasst. Der Weltraum wird als extreme Umgebung eingestuft, da sich seine Bedingungen von denen auf der Erde unterscheiden. Um im Weltraum zu überleben, müssen viele Faktoren berücksichtigt und Vorkehrungen getroffen werden. Wissenschaftler und Forscher glauben, dass die Erforschung des Weltraums und das Verständnis des aktuellen Zustands aller Dinge dazu beitragen können, die Funktionsweise des Universums zu verstehen und sich auf mögliche Umweltkrisen vorzubereiten

In diesem Artikel wird vorgestellt, wie Überanpassung und Unteranpassung in Modellen für maschinelles Lernen mithilfe von Lernkurven effektiv identifiziert werden können. Unteranpassung und Überanpassung 1. Überanpassung Wenn ein Modell mit den Daten übertrainiert ist, sodass es daraus Rauschen lernt, spricht man von einer Überanpassung des Modells. Ein überangepasstes Modell lernt jedes Beispiel so perfekt, dass es ein unsichtbares/neues Beispiel falsch klassifiziert. Für ein überangepasstes Modell erhalten wir einen perfekten/nahezu perfekten Trainingssatzwert und einen schrecklichen Validierungssatz-/Testwert. Leicht geändert: „Ursache der Überanpassung: Verwenden Sie ein komplexes Modell, um ein einfaches Problem zu lösen und Rauschen aus den Daten zu extrahieren. Weil ein kleiner Datensatz als Trainingssatz möglicherweise nicht die korrekte Darstellung aller Daten darstellt. 2. Unteranpassung Heru.“

Zu den häufigsten Herausforderungen, mit denen Algorithmen für maschinelles Lernen in C++ konfrontiert sind, gehören Speicherverwaltung, Multithreading, Leistungsoptimierung und Wartbarkeit. Zu den Lösungen gehören die Verwendung intelligenter Zeiger, moderner Threading-Bibliotheken, SIMD-Anweisungen und Bibliotheken von Drittanbietern sowie die Einhaltung von Codierungsstilrichtlinien und die Verwendung von Automatisierungstools. Praktische Fälle zeigen, wie man die Eigen-Bibliothek nutzt, um lineare Regressionsalgorithmen zu implementieren, den Speicher effektiv zu verwalten und leistungsstarke Matrixoperationen zu nutzen.

Übersetzer |. Rezensiert von Li Rui |. Chonglou Modelle für künstliche Intelligenz (KI) und maschinelles Lernen (ML) werden heutzutage immer komplexer, und die von diesen Modellen erzeugten Ergebnisse sind eine Blackbox, die den Stakeholdern nicht erklärt werden kann. Explainable AI (XAI) zielt darauf ab, dieses Problem zu lösen, indem es Stakeholdern ermöglicht, die Funktionsweise dieser Modelle zu verstehen, sicherzustellen, dass sie verstehen, wie diese Modelle tatsächlich Entscheidungen treffen, und Transparenz in KI-Systemen, Vertrauen und Verantwortlichkeit zur Lösung dieses Problems gewährleistet. In diesem Artikel werden verschiedene Techniken der erklärbaren künstlichen Intelligenz (XAI) untersucht, um ihre zugrunde liegenden Prinzipien zu veranschaulichen. Mehrere Gründe, warum erklärbare KI von entscheidender Bedeutung ist. Vertrauen und Transparenz: Damit KI-Systeme allgemein akzeptiert und vertrauenswürdig sind, müssen Benutzer verstehen, wie Entscheidungen getroffen werden

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist
