Heim Technologie-Peripheriegeräte KI Gibbs-Abtastalgorithmus

Gibbs-Abtastalgorithmus

Jan 23, 2024 pm 08:36 PM
机器学习 Algorithmuskonzept

Gibbs-Abtastalgorithmus

Der Gibbs-Abtastalgorithmus ist ein Abtastalgorithmus, der auf der Markov-Ketten-Monte-Carlo-Methode basiert. Es wird hauptsächlich zum Generieren von Stichproben aus Gelenkverteilungen verwendet und eignet sich besonders für die Probenahme hochdimensionaler Gelenkverteilungen. Die Kernidee des Gibbs-Stichprobenalgorithmus besteht darin, jede Variable einzeln unter Berücksichtigung anderer Variablen abzutasten, um den Zweck der Stichprobe aus der gemeinsamen Verteilung zu erreichen. Konkrete Schritte sind wie folgt: 1. Initialisieren Sie die Werte aller Variablen. 2. Wählen Sie eine Variable aus der gemeinsamen Verteilung aus, sagen wir, es ist Variable A. 3. Nehmen Sie anhand der Werte aller anderen Variablen eine Stichprobe der Variablen A gemäß der bedingten Verteilung P (A | andere Variablen) und aktualisieren Sie den Wert von A. 4. Wiederholen Sie die Schritte 2 und 3, um jede Variable nacheinander abzutasten, bis die Werte aller Variablen aktualisiert sind. 5. Wiederholen Sie die Schritte 2 bis 4 für mehrere Iterationen, bis die Stichproben zur gemeinsamen Verteilung konvergieren. Durch diese Einzelaktualisierungsmethode kann der Gibbs-Stichprobenalgorithmus die gemeinsame Verteilung annähern und dadurch Stichproben erzeugen, die der gemeinsamen Verteilung entsprechen. Die Konvergenzgeschwindigkeit und der Abtasteffekt dieses Algorithmus stimmen mit dem Anfangswert überein

1. Initialisieren Sie den Wert jeder Variablen.

2. Führen Sie für jede Variable anhand der Werte anderer Variablen eine Stichprobe gemäß der bedingten Wahrscheinlichkeitsverteilung durch und aktualisieren Sie den Wert der Variablen.

3. Wiederholen Sie Schritt 2, bis genügend Proben entnommen wurden oder der Probenahmeprozess konvergiert.

Der Gibbs-Sampling-Algorithmus hat zwei Hauptvorteile. Erstens eignet es sich für den Umgang mit hochdimensionalen Gelenkverteilungen. Auch wenn wir die spezifische Form der Gelenkverteilung nicht kennen, müssen wir nur die bedingte Verteilung jeder Variablen kennen. Dies macht den Gibbs-Abtastalgorithmus bei realen Problemen weit verbreitet. Zweitens kann der Stichprobenalgorithmus von Gibbs auch zur Schätzung von Statistiken wie Erwartung und Varianz der gemeinsamen Verteilung verwendet werden, was uns wichtige Informationen über die Verteilungseigenschaften liefert. Daher ist der Gibbs-Stichprobenalgorithmus eine leistungsstarke und flexible statistische Methode.

2. Anwendung des Gibbs-Sampling-Algorithmus

Der Gibbs-Sampling-Algorithmus wird häufig in vielen Bereichen eingesetzt, beispielsweise beim maschinellen Lernen, in der Statistik, beim Computer Vision, bei der Verarbeitung natürlicher Sprache usw. Zu den typischen Anwendungen gehören unter anderem:

1. Latent Dirichlet Allocation Model (LDA): Gibbs-Sampling wird häufig in LDA-Modellen zur Themenmodellierung von Textdaten verwendet. Im LDA-Modell wird die Gibbs-Stichprobe verwendet, um das Thema von Wörtern aus dem Text auszuwählen, d. h. um zu bestimmen, zu welchem ​​Thema jedes Wort gehört.

2. Hidden-Markov-Modell (HMM): Gibbs-Sampling kann auch zum Abtasten von HMM-Modellen zur Modellierung von Sequenzdaten verwendet werden. Im HMM-Modell wird die Gibbs-Stichprobe verwendet, um die verborgene Zustandssequenz zu bestimmen, dh den potenziellen Zustand, der den einzelnen Beobachtungsdaten entspricht.

3. Markov-Ketten-Monte-Carlo-Methode (MCMC): Die Gibbs-Stichprobe ist eine Form der MCMC-Methode und kann zum Abtasten jeder gemeinsamen Verteilung verwendet werden. Die MCMC-Methode findet in vielen Bereichen Anwendung, beispielsweise in der Bayes'schen Statistik, Physik, Finanzen usw.

4. Simulierter Glühalgorithmus: Gibbs-Sampling kann auch in simulierten Glühalgorithmen verwendet werden, um optimale Lösungen im mehrdimensionalen Raum zu finden. Im Simulated-Annealing-Algorithmus wird die Gibbs-Stichprobe verwendet, um zufällig eine Lösung aus der Nachbarschaft der aktuellen Lösung auszuwählen.

3. Beispiel für den Gibbs-Abtastalgorithmus

Das Folgende ist ein einfaches Beispiel, das zeigt, wie der Gibbs-Abtastalgorithmus zum Abtasten einer Binärverteilung verwendet wird.

Angenommen, es gibt eine binäre Verteilung, deren Wahrscheinlichkeitsfunktion ist:

P(x1,x2)=1/8*(2x1+x2)

wobei x1 und x2 beide 0 oder 1 sind. Unser Ziel ist es, aus dieser Verteilung Stichproben zu ziehen.

Zuerst müssen wir die bedingte Wahrscheinlichkeitsverteilung jeder Variablen bestimmen. Da x1 und x2 binäre Variablen sind, können ihre bedingten Wahrscheinlichkeitsverteilungen gemäß der vollständigen Wahrscheinlichkeitsformel berechnet werden:

P(x1|x2)=2/3 wenn x2=0,1/2 wenn x2=1

P (x2 | , wie z. B. x1=0, x2=1.

2. Probieren Sie x1 und x2 gemäß der bedingten Wahrscheinlichkeitsverteilung aus. Bei x2=1 gilt gemäß der bedingten Wahrscheinlichkeitsverteilung P(x1|x2) P(x1=0|x2=1)=1/2, P(x1=1|x2=1)=1/2. Angenommen, wir probieren x1=0 aus.

3. Bei x1=0 gilt gemäß der bedingten Wahrscheinlichkeitsverteilung P(x2|x1) P(x2=0|x1=0)=2/3, P(x2=1|x1=0). ) =1/3. Angenommen, wir probieren x2=0 aus.

4. Wiederholen Sie die Schritte 2 und 3, bis genügend Proben entnommen wurden oder der Probenahmeprozess konvergiert.

Durch den Gibbs-Stichprobenalgorithmus können wir Stichproben aus der Binärverteilung erhalten, die zur Schätzung von Statistiken wie Erwartung und Varianz der Binärverteilung verwendet werden können. Darüber hinaus kann der Gibbs-Stichprobenalgorithmus auch zur Stichprobenerhebung aus komplexeren gemeinsamen Verteilungen, wie etwa Gaußschen Mischungsmodellen, verwendet werden.

Das obige ist der detaillierte Inhalt vonGibbs-Abtastalgorithmus. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
2 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Repo: Wie man Teamkollegen wiederbelebt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Abenteuer: Wie man riesige Samen bekommt
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

15 empfohlene kostenlose Open-Source-Bildanmerkungstools 15 empfohlene kostenlose Open-Source-Bildanmerkungstools Mar 28, 2024 pm 01:21 PM

Bei der Bildanmerkung handelt es sich um das Verknüpfen von Beschriftungen oder beschreibenden Informationen mit Bildern, um dem Bildinhalt eine tiefere Bedeutung und Erklärung zu verleihen. Dieser Prozess ist entscheidend für maschinelles Lernen, das dabei hilft, Sehmodelle zu trainieren, um einzelne Elemente in Bildern genauer zu identifizieren. Durch das Hinzufügen von Anmerkungen zu Bildern kann der Computer die Semantik und den Kontext hinter den Bildern verstehen und so den Bildinhalt besser verstehen und analysieren. Die Bildanmerkung hat ein breites Anwendungsspektrum und deckt viele Bereiche ab, z. B. Computer Vision, Verarbeitung natürlicher Sprache und Diagramm-Vision-Modelle. Sie verfügt über ein breites Anwendungsspektrum, z. B. zur Unterstützung von Fahrzeugen bei der Identifizierung von Hindernissen auf der Straße und bei der Erkennung und Diagnose von Krankheiten durch medizinische Bilderkennung. In diesem Artikel werden hauptsächlich einige bessere Open-Source- und kostenlose Bildanmerkungstools empfohlen. 1.Makesens

In diesem Artikel erfahren Sie mehr über SHAP: Modellerklärung für maschinelles Lernen In diesem Artikel erfahren Sie mehr über SHAP: Modellerklärung für maschinelles Lernen Jun 01, 2024 am 10:58 AM

In den Bereichen maschinelles Lernen und Datenwissenschaft stand die Interpretierbarkeit von Modellen schon immer im Fokus von Forschern und Praktikern. Mit der weit verbreiteten Anwendung komplexer Modelle wie Deep Learning und Ensemble-Methoden ist das Verständnis des Entscheidungsprozesses des Modells besonders wichtig geworden. Explainable AI|XAI trägt dazu bei, Vertrauen in maschinelle Lernmodelle aufzubauen, indem es die Transparenz des Modells erhöht. Eine Verbesserung der Modelltransparenz kann durch Methoden wie den weit verbreiteten Einsatz mehrerer komplexer Modelle sowie der Entscheidungsprozesse zur Erläuterung der Modelle erreicht werden. Zu diesen Methoden gehören die Analyse der Merkmalsbedeutung, die Schätzung des Modellvorhersageintervalls, lokale Interpretierbarkeitsalgorithmen usw. Die Merkmalswichtigkeitsanalyse kann den Entscheidungsprozess des Modells erklären, indem sie den Grad des Einflusses des Modells auf die Eingabemerkmale bewertet. Schätzung des Modellvorhersageintervalls

Identifizieren Sie Über- und Unteranpassung anhand von Lernkurven Identifizieren Sie Über- und Unteranpassung anhand von Lernkurven Apr 29, 2024 pm 06:50 PM

In diesem Artikel wird vorgestellt, wie Überanpassung und Unteranpassung in Modellen für maschinelles Lernen mithilfe von Lernkurven effektiv identifiziert werden können. Unteranpassung und Überanpassung 1. Überanpassung Wenn ein Modell mit den Daten übertrainiert ist, sodass es daraus Rauschen lernt, spricht man von einer Überanpassung des Modells. Ein überangepasstes Modell lernt jedes Beispiel so perfekt, dass es ein unsichtbares/neues Beispiel falsch klassifiziert. Für ein überangepasstes Modell erhalten wir einen perfekten/nahezu perfekten Trainingssatzwert und einen schrecklichen Validierungssatz-/Testwert. Leicht geändert: „Ursache der Überanpassung: Verwenden Sie ein komplexes Modell, um ein einfaches Problem zu lösen und Rauschen aus den Daten zu extrahieren. Weil ein kleiner Datensatz als Trainingssatz möglicherweise nicht die korrekte Darstellung aller Daten darstellt. 2. Unteranpassung Heru.“

Transparent! Eine ausführliche Analyse der Prinzipien der wichtigsten Modelle des maschinellen Lernens! Transparent! Eine ausführliche Analyse der Prinzipien der wichtigsten Modelle des maschinellen Lernens! Apr 12, 2024 pm 05:55 PM

Laienhaft ausgedrückt ist ein Modell für maschinelles Lernen eine mathematische Funktion, die Eingabedaten einer vorhergesagten Ausgabe zuordnet. Genauer gesagt ist ein Modell für maschinelles Lernen eine mathematische Funktion, die Modellparameter anpasst, indem sie aus Trainingsdaten lernt, um den Fehler zwischen der vorhergesagten Ausgabe und der wahren Bezeichnung zu minimieren. Beim maschinellen Lernen gibt es viele Modelle, z. B. logistische Regressionsmodelle, Entscheidungsbaummodelle, Support-Vektor-Maschinenmodelle usw. Jedes Modell verfügt über seine anwendbaren Datentypen und Problemtypen. Gleichzeitig gibt es viele Gemeinsamkeiten zwischen verschiedenen Modellen oder es gibt einen verborgenen Weg für die Modellentwicklung. Am Beispiel des konnektionistischen Perzeptrons können wir es durch Erhöhen der Anzahl verborgener Schichten des Perzeptrons in ein tiefes neuronales Netzwerk umwandeln. Wenn dem Perzeptron eine Kernelfunktion hinzugefügt wird, kann es in eine SVM umgewandelt werden. Dieses hier

Die Entwicklung der künstlichen Intelligenz in der Weltraumforschung und der Siedlungstechnik Die Entwicklung der künstlichen Intelligenz in der Weltraumforschung und der Siedlungstechnik Apr 29, 2024 pm 03:25 PM

In den 1950er Jahren wurde die künstliche Intelligenz (KI) geboren. Damals entdeckten Forscher, dass Maschinen menschenähnliche Aufgaben wie das Denken ausführen können. Später, in den 1960er Jahren, finanzierte das US-Verteidigungsministerium künstliche Intelligenz und richtete Labore für die weitere Entwicklung ein. Forscher finden Anwendungen für künstliche Intelligenz in vielen Bereichen, etwa bei der Erforschung des Weltraums und beim Überleben in extremen Umgebungen. Unter Weltraumforschung versteht man die Erforschung des Universums, das das gesamte Universum außerhalb der Erde umfasst. Der Weltraum wird als extreme Umgebung eingestuft, da sich seine Bedingungen von denen auf der Erde unterscheiden. Um im Weltraum zu überleben, müssen viele Faktoren berücksichtigt und Vorkehrungen getroffen werden. Wissenschaftler und Forscher glauben, dass die Erforschung des Weltraums und das Verständnis des aktuellen Zustands aller Dinge dazu beitragen können, die Funktionsweise des Universums zu verstehen und sich auf mögliche Umweltkrisen vorzubereiten

Implementierung von Algorithmen für maschinelles Lernen in C++: Häufige Herausforderungen und Lösungen Implementierung von Algorithmen für maschinelles Lernen in C++: Häufige Herausforderungen und Lösungen Jun 03, 2024 pm 01:25 PM

Zu den häufigsten Herausforderungen, mit denen Algorithmen für maschinelles Lernen in C++ konfrontiert sind, gehören Speicherverwaltung, Multithreading, Leistungsoptimierung und Wartbarkeit. Zu den Lösungen gehören die Verwendung intelligenter Zeiger, moderner Threading-Bibliotheken, SIMD-Anweisungen und Bibliotheken von Drittanbietern sowie die Einhaltung von Codierungsstilrichtlinien und die Verwendung von Automatisierungstools. Praktische Fälle zeigen, wie man die Eigen-Bibliothek nutzt, um lineare Regressionsalgorithmen zu implementieren, den Speicher effektiv zu verwalten und leistungsstarke Matrixoperationen zu nutzen.

Erklärbare KI: Erklären komplexer KI/ML-Modelle Erklärbare KI: Erklären komplexer KI/ML-Modelle Jun 03, 2024 pm 10:08 PM

Übersetzer |. Rezensiert von Li Rui |. Chonglou Modelle für künstliche Intelligenz (KI) und maschinelles Lernen (ML) werden heutzutage immer komplexer, und die von diesen Modellen erzeugten Ergebnisse sind eine Blackbox, die den Stakeholdern nicht erklärt werden kann. Explainable AI (XAI) zielt darauf ab, dieses Problem zu lösen, indem es Stakeholdern ermöglicht, die Funktionsweise dieser Modelle zu verstehen, sicherzustellen, dass sie verstehen, wie diese Modelle tatsächlich Entscheidungen treffen, und Transparenz in KI-Systemen, Vertrauen und Verantwortlichkeit zur Lösung dieses Problems gewährleistet. In diesem Artikel werden verschiedene Techniken der erklärbaren künstlichen Intelligenz (XAI) untersucht, um ihre zugrunde liegenden Prinzipien zu veranschaulichen. Mehrere Gründe, warum erklärbare KI von entscheidender Bedeutung ist. Vertrauen und Transparenz: Damit KI-Systeme allgemein akzeptiert und vertrauenswürdig sind, müssen Benutzer verstehen, wie Entscheidungen getroffen werden

Ausblick auf zukünftige Trends der Golang-Technologie im maschinellen Lernen Ausblick auf zukünftige Trends der Golang-Technologie im maschinellen Lernen May 08, 2024 am 10:15 AM

Das Anwendungspotenzial der Go-Sprache im Bereich des maschinellen Lernens ist enorm. Ihre Vorteile sind: Parallelität: Sie unterstützt die parallele Programmierung und eignet sich für rechenintensive Operationen bei maschinellen Lernaufgaben. Effizienz: Der Garbage Collector und die Sprachfunktionen sorgen dafür, dass der Code auch bei der Verarbeitung großer Datenmengen effizient ist. Benutzerfreundlichkeit: Die Syntax ist prägnant und erleichtert das Erlernen und Schreiben von Anwendungen für maschinelles Lernen.

See all articles