Heim > Technologie-Peripheriegeräte > KI > Erkennen handgeschriebener Ziffern mithilfe von Faltungs-Neuronalen Netzen

Erkennen handgeschriebener Ziffern mithilfe von Faltungs-Neuronalen Netzen

PHPz
Freigeben: 2024-01-23 21:03:22
nach vorne
1123 Leute haben es durchsucht

Erkennen handgeschriebener Ziffern mithilfe von Faltungs-Neuronalen Netzen

MNIST数据集是由手写数字组成的,包括60,000个训练样本和10,000个测试样本。每个样本都是一个28x28像素的灰度图像,表示从0到9的数字。

卷积神经网络(CNN)是深度学习中用于图像分类的模型。它通过卷积层和池化层提取图像特征,并用全连接层进行分类。

下面我将介绍如何使用Python和TensorFlow实现一个简单的CNN模型来对MNIST数据集进行分类。

首先,我们需要导入必要的库和MNIST数据集:

import tensorflow as tf
from tensorflow.keras.datasets import mnist

# 加载MNIST数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()
Nach dem Login kopieren

接下来,我们需要将图像数据归一化并将标签数据转换为独热编码格式:

# 归一化图像数据
x_train = x_train / 255.0
x_test = x_test / 255.0

# 将标签数据转换为独热编码格式
y_train = tf.keras.utils.to_categorical(y_train, num_classes=10)
y_test = tf.keras.utils.to_categorical(y_test, num_classes=10)
Nach dem Login kopieren

然后,我们定义CNN模型。这个模型包括两个卷积层和两个池化层,以及一个全连接层。我们使用ReLU激活函数,并在最后一层使用Softmax激活函数进行分类。代码如下:

model = tf.keras.models.Sequential([
    # 第一个卷积层
    tf.keras.layers.Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1)),
    tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
    # 第二个卷积层
    tf.keras.layers.Conv2D(filters=64, kernel_size=(3, 3), activation='relu'),
    tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
    # 将特征图展平
    tf.keras.layers.Flatten(),
    # 全连接层
    tf.keras.layers.Dense(units=128, activation='relu'),
    # 输出层
    tf.keras.layers.Dense(units=10, activation='softmax')
])
Nach dem Login kopieren

接下来,我们需要编译模型并指定损失函数、优化器和评估指标:

# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
Nach dem Login kopieren

最后,我们训练模型并进行测试:

# 训练模型
model.fit(x_train.reshape(-1, 28, 28, 1), y_train, epochs=5, batch_size=32)

# 测试模型
score = model.evaluate(x_test.reshape(-1, 28, 28, 1), y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
Nach dem Login kopieren

在运行完整代码后,我们可以看到模型的测试准确率约为99%。

总结一下,Erkennen handgeschriebener Ziffern mithilfe von Faltungs-Neuronalen Netzen的步骤如下:

1.加载MNIST数据集并进行预处理,包括归一化和独热编码;

2.定义CNN模型,包括卷积层、池化层和全连接层,并指定激活函数;

3.编译模型,指定损失函数、优化器和评估指标;

4.训练模型,并在测试集上进行测试。

以上是一个简单的示例,可以根据具体情况进行修改和优化。

Das obige ist der detaillierte Inhalt vonErkennen handgeschriebener Ziffern mithilfe von Faltungs-Neuronalen Netzen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Verwandte Etiketten:
Quelle:163.com
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage