


Was sind die Einschränkungen der Sigmoid-Aktivierungsfunktion in Deep-Learning-Netzwerken?
Die Sigmoid-Aktivierungsfunktion ist eine häufig verwendete nichtlineare Funktion, mit der nichtlineare Merkmale in neuronale Netze eingeführt werden. Es ordnet Eingabewerte einem Bereich zwischen 0 und 1 zu und wird daher häufig bei binären Klassifizierungsaufgaben verwendet. Obwohl die Sigmoidfunktion einige Vorteile hat, weist sie auch einige Nachteile auf, die sich negativ auf die Netzwerkleistung auswirken können. Wenn beispielsweise der Eingabewert der Sigmoidfunktion weit von 0 entfernt ist, liegt der Gradient nahe bei 0, was das Problem des Verschwindens des Gradienten verursacht und die Tiefe des Netzwerks begrenzt. Darüber hinaus ist die Ausgabe der Sigmoidfunktion nicht um 0 zentriert, was zu Datendrift und Gradientenexplosionsproblemen führen kann. Daher sind in einigen Fällen möglicherweise andere Aktivierungsfunktionen wie ReLU besser geeignet, um die Mängel der Sigmoidfunktion zu überwinden und die Netzwerkleistung zu verbessern.
Im Folgenden sind einige Nachteile der Sigmoid-Aktivierungsfunktion aufgeführt.
1. Problem des Verschwindens von Gradienten
Im Backpropagation-Algorithmus spielen Gradienten eine wichtige Rolle bei der Aktualisierung von Netzwerkparametern. Wenn die Eingabe jedoch nahe bei 0 oder 1 liegt, ist die Ableitung der Sigmoidfunktion sehr klein. Dies bedeutet, dass während des Trainingsprozesses auch der Gradient in diesen Bereichen sehr klein wird, was zum Problem des Verschwindens des Gradienten führt. Dies macht es für das neuronale Netzwerk schwierig, tiefere Merkmale zu lernen, da die Gradienten während der Backpropagation allmählich abnehmen.
2. Die Ausgabe ist nicht 0-zentriert
Die Ausgabe der Sigmoidfunktion ist nicht 0-zentriert, was zu Problemen führen kann. In einigen Schichten des Netzwerks kann der Durchschnittswert der Eingabe beispielsweise sehr groß oder sehr klein werden. In diesen Fällen liegt die Ausgabe der Sigmoidfunktion nahe bei 1 oder 0, was zu einer verringerten Leistung führen kann Netzwerk.
3. Zeitaufwändig
Die Berechnung der Sigmoidfunktion dauert länger als bei einigen anderen Aktivierungsfunktionen (z. B. ReLU). Dies liegt daran, dass die Sigmoidfunktion exponentielle Operationen beinhaltet, die langsamer sind.
4. Nicht spärlich
Die spärliche Darstellung ist eine sehr nützliche Funktion, die die Rechenkomplexität und den Speicherplatzverbrauch reduzieren kann. Die Sigmoidfunktion ist jedoch nicht dünn besetzt, da ihre Ausgabe über den gesamten Bereich wertvoll ist. Das bedeutet, dass in einem Netzwerk, das eine Sigmoidfunktion verwendet, jedes Neuron eine Ausgabe erzeugt und nicht nur eine kleine Teilmenge von Neuronen, die eine Ausgabe erzeugt. Dies kann zu einer übermäßigen Rechenlast für das Netzwerk führen und erhöht auch die Kosten für die Speicherung von Netzwerkgewichten.
5. Negative Eingaben werden nicht unterstützt
Die Eingabe der Sigmoidfunktion muss eine nicht negative Zahl sein. Das heißt, wenn die Eingaben in das Netzwerk negative numerische Werte haben, kann die Sigmoidfunktion diese nicht verarbeiten. Dies kann dazu führen, dass die Leistung des Netzwerks abnimmt oder eine fehlerhafte Ausgabe erzeugt wird.
6. Gilt nicht für Klassifizierungsaufgaben mit mehreren Kategorien.
Die Sigmoidfunktion eignet sich am besten für binäre Klassifizierungsaufgaben, da ihr Ausgabebereich zwischen 0 und 1 liegt. Bei Klassifizierungsaufgaben mit mehreren Kategorien muss die Ausgabe jedoch eine von mehreren Kategorien darstellen, sodass die Softmax-Funktion zum Normalisieren der Ausgabe verwendet werden muss. Die Verwendung der Sigmoidfunktion erfordert das Training eines anderen Klassifikators für jede Kategorie, was zu höheren Rechen- und Speicherkosten führt.
Die oben genannten sind einige Mängel der Sigmoidfunktion in Deep-Learning-Netzwerken. Obwohl die Sigmoidfunktion in einigen Fällen immer noch nützlich ist, ist es in den meisten Fällen besser, andere Aktivierungsfunktionen wie ReLU, LeakyReLU, ELU, Swish usw. zu verwenden. Diese Funktionen bieten eine bessere Leistung, eine schnellere Berechnungsgeschwindigkeit und einen geringeren Speicherbedarf und werden daher in praktischen Anwendungen häufiger verwendet.
Das obige ist der detaillierte Inhalt vonWas sind die Einschränkungen der Sigmoid-Aktivierungsfunktion in Deep-Learning-Netzwerken?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Heute diskutieren wir darüber, wie Deep-Learning-Technologie die Leistung von visionbasiertem SLAM (Simultaneous Localization and Mapping) in komplexen Umgebungen verbessern kann. Durch die Kombination von Methoden zur Tiefenmerkmalsextraktion und Tiefenanpassung stellen wir hier ein vielseitiges hybrides visuelles SLAM-System vor, das die Anpassung in anspruchsvollen Szenarien wie schlechten Lichtverhältnissen, dynamischer Beleuchtung, schwach strukturierten Bereichen und starkem Jitter verbessern soll. Unser System unterstützt mehrere Modi, einschließlich erweiterter Monokular-, Stereo-, Monokular-Trägheits- und Stereo-Trägheitskonfigurationen. Darüber hinaus wird analysiert, wie visuelles SLAM mit Deep-Learning-Methoden kombiniert werden kann, um andere Forschungen zu inspirieren. Durch umfangreiche Experimente mit öffentlichen Datensätzen und selbst abgetasteten Daten demonstrieren wir die Überlegenheit von SL-SLAM in Bezug auf Positionierungsgenauigkeit und Tracking-Robustheit.

In der heutigen Welle rasanter technologischer Veränderungen sind künstliche Intelligenz (KI), maschinelles Lernen (ML) und Deep Learning (DL) wie helle Sterne und führen die neue Welle der Informationstechnologie an. Diese drei Wörter tauchen häufig in verschiedenen hochaktuellen Diskussionen und praktischen Anwendungen auf, aber für viele Entdecker, die neu auf diesem Gebiet sind, sind ihre spezifische Bedeutung und ihre internen Zusammenhänge möglicherweise noch immer rätselhaft. Schauen wir uns also zunächst dieses Bild an. Es ist ersichtlich, dass zwischen Deep Learning, maschinellem Lernen und künstlicher Intelligenz ein enger Zusammenhang und eine fortschreitende Beziehung besteht. Deep Learning ist ein spezifischer Bereich des maschinellen Lernens und des maschinellen Lernens

Fast 20 Jahre sind vergangen, seit das Konzept des Deep Learning im Jahr 2006 vorgeschlagen wurde. Deep Learning hat als Revolution auf dem Gebiet der künstlichen Intelligenz viele einflussreiche Algorithmen hervorgebracht. Was sind Ihrer Meinung nach die zehn besten Algorithmen für Deep Learning? Im Folgenden sind meiner Meinung nach die besten Algorithmen für Deep Learning aufgeführt. Sie alle nehmen hinsichtlich Innovation, Anwendungswert und Einfluss eine wichtige Position ein. 1. Hintergrund des Deep Neural Network (DNN): Deep Neural Network (DNN), auch Multi-Layer-Perceptron genannt, ist der am weitesten verbreitete Deep-Learning-Algorithmus. Als er erstmals erfunden wurde, wurde er aufgrund des Engpasses bei der Rechenleistung in Frage gestellt Jahre, Rechenleistung, Der Durchbruch kam mit der Datenexplosion. DNN ist ein neuronales Netzwerkmodell, das mehrere verborgene Schichten enthält. In diesem Modell übergibt jede Schicht Eingaben an die nächste Schicht und

Das bidirektionale LSTM-Modell ist ein neuronales Netzwerk, das zur Textklassifizierung verwendet wird. Unten finden Sie ein einfaches Beispiel, das zeigt, wie bidirektionales LSTM für Textklassifizierungsaufgaben verwendet wird. Zuerst müssen wir die erforderlichen Bibliotheken und Module importieren: importosimportnumpyasnpfromkeras.preprocessing.textimportTokenizerfromkeras.preprocessing.sequenceimportpad_sequencesfromkeras.modelsimportSequentialfromkeras.layersimportDense,Em

Herausgeber | Rettichhaut Seit der Veröffentlichung des leistungsstarken AlphaFold2 im Jahr 2021 verwenden Wissenschaftler Modelle zur Proteinstrukturvorhersage, um verschiedene Proteinstrukturen innerhalb von Zellen zu kartieren, Medikamente zu entdecken und eine „kosmische Karte“ jeder bekannten Proteininteraktion zu zeichnen. Gerade hat Google DeepMind das AlphaFold3-Modell veröffentlicht, das gemeinsame Strukturvorhersagen für Komplexe wie Proteine, Nukleinsäuren, kleine Moleküle, Ionen und modifizierte Reste durchführen kann. Die Genauigkeit von AlphaFold3 wurde im Vergleich zu vielen dedizierten Tools in der Vergangenheit (Protein-Ligand-Interaktion, Protein-Nukleinsäure-Interaktion, Antikörper-Antigen-Vorhersage) deutlich verbessert. Dies zeigt, dass dies innerhalb eines einzigen einheitlichen Deep-Learning-Frameworks möglich ist

Convolutional Neural Network (CNN) und Transformer sind zwei verschiedene Deep-Learning-Modelle, die bei verschiedenen Aufgaben eine hervorragende Leistung gezeigt haben. CNN wird hauptsächlich für Computer-Vision-Aufgaben wie Bildklassifizierung, Zielerkennung und Bildsegmentierung verwendet. Es extrahiert lokale Merkmale auf dem Bild durch Faltungsoperationen und führt eine Reduzierung der Merkmalsdimensionalität und räumliche Invarianz durch Pooling-Operationen durch. Im Gegensatz dazu wird Transformer hauptsächlich für Aufgaben der Verarbeitung natürlicher Sprache (NLP) wie maschinelle Übersetzung, Textklassifizierung und Spracherkennung verwendet. Es nutzt einen Selbstaufmerksamkeitsmechanismus, um Abhängigkeiten in Sequenzen zu modellieren und vermeidet so die sequentielle Berechnung in herkömmlichen rekurrenten neuronalen Netzen. Obwohl diese beiden Modelle für unterschiedliche Aufgaben verwendet werden, weisen sie Ähnlichkeiten in der Sequenzmodellierung auf

Übersicht Um ModelScope-Benutzern die schnelle und bequeme Nutzung verschiedener von der Plattform bereitgestellter Modelle zu ermöglichen, wird eine Reihe voll funktionsfähiger Python-Bibliotheken bereitgestellt, die die Implementierung offizieller ModelScope-Modelle sowie die erforderlichen Tools für die Verwendung dieser Modelle für Inferenzen umfassen , Feinabstimmung und andere Aufgaben im Zusammenhang mit der Datenvorverarbeitung, Nachverarbeitung, Effektbewertung und anderen Funktionen und bietet gleichzeitig eine einfache und benutzerfreundliche API und umfangreiche Anwendungsbeispiele. Durch den Aufruf der Bibliothek können Benutzer Aufgaben wie Modellinferenz, Schulung und Bewertung erledigen, indem sie nur wenige Codezeilen schreiben. Auf dieser Basis können sie auch schnell eine Sekundärentwicklung durchführen, um ihre eigenen innovativen Ideen zu verwirklichen. Das derzeit von der Bibliothek bereitgestellte Algorithmusmodell ist:

Faltungs-Neuronale Netze eignen sich gut für Aufgaben zur Bildrauschunterdrückung. Es nutzt die erlernten Filter, um das Rauschen zu filtern und so das Originalbild wiederherzustellen. In diesem Artikel wird die Methode zur Bildentrauschung basierend auf einem Faltungs-Neuronalen Netzwerk ausführlich vorgestellt. 1. Überblick über das Convolutional Neural Network Das Convolutional Neural Network ist ein Deep-Learning-Algorithmus, der eine Kombination aus mehreren Faltungsschichten, Pooling-Schichten und vollständig verbundenen Schichten verwendet, um Bildmerkmale zu lernen und zu klassifizieren. In der Faltungsschicht werden die lokalen Merkmale des Bildes durch Faltungsoperationen extrahiert und so die räumliche Korrelation im Bild erfasst. Die Pooling-Schicht reduziert den Rechenaufwand durch Reduzierung der Feature-Dimension und behält die Hauptfeatures bei. Die vollständig verbundene Schicht ist für die Zuordnung erlernter Merkmale und Beschriftungen zur Implementierung der Bildklassifizierung oder anderer Aufgaben verantwortlich. Das Design dieser Netzwerkstruktur macht das Faltungs-Neuronale Netzwerk für die Bildverarbeitung und -erkennung nützlich.
