


Vorstellung der effizienten Datendeduplizierungsmethode in Pandas: Tipps zum schnellen Entfernen doppelter Daten
Die Pandas-Deduplizierungsmethode enthüllte: Eine schnelle und effiziente Datendeduplizierungsmethode erfordert spezifische Codebeispiele
Beim Prozess der Datenanalyse und -verarbeitung kommt es häufig zu Duplikaten in den Daten. Doppelte Daten können die Analyseergebnisse verfälschen, daher ist die Deduplizierung ein sehr wichtiger Schritt. Pandas, eine leistungsstarke Datenverarbeitungsbibliothek, bietet eine Vielzahl von Methoden zur Datendeduplizierung. In diesem Artikel werden einige häufig verwendete Deduplizierungsmethoden vorgestellt und spezifische Codebeispiele angehängt.
- Basierend auf der Deduplizierung einzelner Spalten
Die häufigste Situation ist die Deduplizierung basierend darauf, ob der Wert einer bestimmten Spalte wiederholt wird. In Pandas können Sie die Methode .duplicated()
verwenden, um zu bestimmen, ob die Werte einer Spalte dupliziert sind, und dann die Methode .drop_duplicates()
zum Entfernen verwenden doppelte Werte. .duplicated()
方法来判断某一列的值是否重复,然后使用.drop_duplicates()
方法来去除重复值。
例如,我们有一个包含了学生信息的DataFrame,其中有一个列是学生的学号,我们希望根据学号去除重复的行:
import pandas as pd data = {'学号': [1001, 1002, 1003, 1002, 1004, 1003], '姓名': ['张三', '李四', '王五', '李四', '赵六', '王五'], '年龄': [18, 19, 20, 19, 21, 20]} df = pd.DataFrame(data) df.drop_duplicates(subset='学号', inplace=True) print(df)
运行结果:
学号 姓名 年龄 0 1001 张三 18 1 1002 李四 19 2 1003 王五 20 4 1004 赵六 21
这样就去除了学号重复的行,只保留了第一次出现的行。
- 基于多列去重
有时候我们需要根据多个列的值是否重复来进行去重。在.drop_duplicates()
方法中可以通过subset
参数指定要根据哪些列进行去重。
例如,我们还是使用上面的学生信息的DataFrame,现在根据学号和姓名去除重复的行:
import pandas as pd data = {'学号': [1001, 1002, 1003, 1002, 1004, 1003], '姓名': ['张三', '李四', '王五', '李四', '赵六', '王五'], '年龄': [18, 19, 20, 19, 21, 20]} df = pd.DataFrame(data) df.drop_duplicates(subset=['学号', '姓名'], inplace=True) print(df)
运行结果:
学号 姓名 年龄 0 1001 张三 18 1 1002 李四 19 2 1003 王五 20 4 1004 赵六 21
这样就根据学号和姓名同时去除了重复的行。
- 基于所有列去重
有时候我们希望根据整个DataFrame的所有列的值是否重复来进行去重。可以使用.duplicated()
方法的keep
参数设置为False
,则会标记所有重复的行。然后使用.drop_duplicates()
import pandas as pd data = {'学号': [1001, 1002, 1003, 1002, 1004, 1003], '姓名': ['张三', '李四', '王五', '李四', '赵六', '王五'], '年龄': [18, 19, 20, 19, 21, 20]} df = pd.DataFrame(data) df.drop_duplicates(keep=False, inplace=True) print(df)
学号 姓名 年龄 0 1001 张三 18 4 1004 赵六 21
- Deduplizierung basierend auf mehreren Spalten
Manchmal müssen wir basierend darauf deduplizieren, ob die Werte mehrerer Spalten wiederholt werden. In der Methode .drop_duplicates()
können Sie mit dem Parameter subset
angeben, welche Spalten für die Deduplizierung verwendet werden sollen.
Zum Beispiel verwenden wir immer noch den obigen DataFrame der Studenteninformationen und entfernen jetzt doppelte Zeilen basierend auf der Studenten-ID und dem Namen:
rrreee🎜Laufergebnisse: 🎜rrreee🎜Auf diese Weise werden doppelte Zeilen basierend auf der Studenten-ID und dem Namen entfernt gleichzeitig. 🎜- 🎜Deduplizierung basierend auf allen Spalten🎜🎜🎜Manchmal möchten wir eine Deduplizierung basierend darauf durchführen, ob die Werte aller Spalten im gesamten DataFrame wiederholt werden. Sie können die Methode
.duplicated()
verwenden, um den Parameter keep
auf False
zu setzen, und alle doppelten Zeilen werden markiert. Verwenden Sie dann die Methode .drop_duplicates()
, um diese doppelten Zeilen zu entfernen. 🎜🎜Zum Beispiel verwenden wir immer noch den obigen DataFrame der Studenteninformationen und entfernen jetzt doppelte Zeilen basierend auf allen Spalten des gesamten DataFrame: 🎜rrreee🎜Laufergebnisse: 🎜rrreee🎜Auf diese Weise werden alle doppelten Zeilen im gesamten DataFrame entfernt . 🎜🎜Zusammenfassung: 🎜🎜In diesem Artikel werden drei häufig verwendete Deduplizierungsmethoden in Pandas vorgestellt: Deduplizierung basierend auf einer einzelnen Spalte, Deduplizierung basierend auf mehreren Spalten und Deduplizierung basierend auf allen Spalten. Wählen Sie entsprechend den tatsächlichen Anforderungen die geeignete Methode aus, um doppelte Daten schnell und effizient zu entfernen. In praktischen Anwendungen können diese Methoden je nach spezifischen Daten und Anforderungen flexibel eingesetzt werden, um die Effizienz der Datenverarbeitung und -analyse zu verbessern. 🎜🎜Das Obige ist der gesamte Inhalt dieses Artikels. Ich hoffe, dass die Leser davon profitieren und Pandas besser für die Datendeduplizierung einsetzen können. 🎜Das obige ist der detaillierte Inhalt vonVorstellung der effizienten Datendeduplizierungsmethode in Pandas: Tipps zum schnellen Entfernen doppelter Daten. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



DDREASE ist ein Tool zum Wiederherstellen von Daten von Datei- oder Blockgeräten wie Festplatten, SSDs, RAM-Disks, CDs, DVDs und USB-Speichergeräten. Es kopiert Daten von einem Blockgerät auf ein anderes, wobei beschädigte Blöcke zurückbleiben und nur gute Blöcke verschoben werden. ddreasue ist ein leistungsstarkes Wiederherstellungstool, das vollständig automatisiert ist, da es während der Wiederherstellungsvorgänge keine Unterbrechungen erfordert. Darüber hinaus kann es dank der ddasue-Map-Datei jederzeit gestoppt und fortgesetzt werden. Weitere wichtige Funktionen von DDREASE sind: Es überschreibt die wiederhergestellten Daten nicht, füllt aber die Lücken im Falle einer iterativen Wiederherstellung. Es kann jedoch gekürzt werden, wenn das Tool explizit dazu aufgefordert wird. Stellen Sie Daten aus mehreren Dateien oder Blöcken in einer einzigen wieder her

0.Was bewirkt dieser Artikel? Wir schlagen DepthFM vor: ein vielseitiges und schnelles generatives monokulares Tiefenschätzungsmodell auf dem neuesten Stand der Technik. Zusätzlich zu herkömmlichen Tiefenschätzungsaufgaben demonstriert DepthFM auch hochmoderne Fähigkeiten bei nachgelagerten Aufgaben wie dem Tiefen-Inpainting. DepthFM ist effizient und kann Tiefenkarten innerhalb weniger Inferenzschritte synthetisieren. Lassen Sie uns diese Arbeit gemeinsam lesen ~ 1. Titel der Papierinformationen: DepthFM: FastMonocularDepthEstimationwithFlowMatching Autor: MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

Wenn Sie wissen müssen, wie Sie die Filterung mit mehreren Kriterien in Excel verwenden, führt Sie das folgende Tutorial durch die Schritte, um sicherzustellen, dass Sie Ihre Daten effektiv filtern und sortieren können. Die Filterfunktion von Excel ist sehr leistungsstark und kann Ihnen dabei helfen, aus großen Datenmengen die benötigten Informationen zu extrahieren. Diese Funktion kann Daten entsprechend den von Ihnen festgelegten Bedingungen filtern und nur die Teile anzeigen, die die Bedingungen erfüllen, wodurch die Datenverwaltung effizienter wird. Mithilfe der Filterfunktion können Sie Zieldaten schnell finden und so Zeit beim Suchen und Organisieren von Daten sparen. Diese Funktion kann nicht nur auf einfache Datenlisten angewendet werden, sondern auch nach mehreren Bedingungen gefiltert werden, um Ihnen dabei zu helfen, die benötigten Informationen genauer zu finden. Insgesamt ist die Filterfunktion von Excel sehr praktisch

Die von Google geförderte Leistung von JAX hat in jüngsten Benchmark-Tests die von Pytorch und TensorFlow übertroffen und belegt bei 7 Indikatoren den ersten Platz. Und der Test wurde nicht auf der TPU mit der besten JAX-Leistung durchgeführt. Obwohl unter Entwicklern Pytorch immer noch beliebter ist als Tensorflow. Aber in Zukunft werden möglicherweise mehr große Modelle auf Basis der JAX-Plattform trainiert und ausgeführt. Modelle Kürzlich hat das Keras-Team drei Backends (TensorFlow, JAX, PyTorch) mit der nativen PyTorch-Implementierung und Keras2 mit TensorFlow verglichen. Zunächst wählen sie eine Reihe von Mainstream-Inhalten aus

Stehen Sie vor einer Verzögerung oder einer langsamen mobilen Datenverbindung auf dem iPhone? Normalerweise hängt die Stärke des Mobilfunk-Internets auf Ihrem Telefon von mehreren Faktoren ab, wie z. B. der Region, dem Mobilfunknetztyp, dem Roaming-Typ usw. Es gibt einige Dinge, die Sie tun können, um eine schnellere und zuverlässigere Mobilfunk-Internetverbindung zu erhalten. Fix 1 – Neustart des iPhone erzwingen Manchmal werden durch einen erzwungenen Neustart Ihres Geräts viele Dinge zurückgesetzt, einschließlich der Mobilfunkverbindung. Schritt 1 – Drücken Sie einfach einmal die Lauter-Taste und lassen Sie sie los. Drücken Sie anschließend die Leiser-Taste und lassen Sie sie wieder los. Schritt 2 – Der nächste Teil des Prozesses besteht darin, die Taste auf der rechten Seite gedrückt zu halten. Lassen Sie das iPhone den Neustart abschließen. Aktivieren Sie Mobilfunkdaten und überprüfen Sie die Netzwerkgeschwindigkeit. Überprüfen Sie es erneut. Fix 2 – Datenmodus ändern 5G bietet zwar bessere Netzwerkgeschwindigkeiten, funktioniert jedoch besser, wenn das Signal schwächer ist

Ich weine zu Tode. Die Daten im Internet reichen überhaupt nicht aus. Das Trainingsmodell sieht aus wie „Die Tribute von Panem“, und KI-Forscher auf der ganzen Welt machen sich Gedanken darüber, wie sie diese datenhungrigen Esser ernähren sollen. Dieses Problem tritt insbesondere bei multimodalen Aufgaben auf. Zu einer Zeit, als sie ratlos waren, nutzte ein Start-up-Team der Abteilung der Renmin-Universität von China sein eigenes neues Modell, um als erstes in China einen „modellgenerierten Datenfeed selbst“ in die Realität umzusetzen. Darüber hinaus handelt es sich um einen zweigleisigen Ansatz auf der Verständnisseite und der Generierungsseite. Beide Seiten können hochwertige, multimodale neue Daten generieren und Datenrückmeldungen an das Modell selbst liefern. Was ist ein Modell? Awaker 1.0, ein großes multimodales Modell, das gerade im Zhongguancun-Forum erschienen ist. Wer ist das Team? Sophon-Motor. Gegründet von Gao Yizhao, einem Doktoranden an der Hillhouse School of Artificial Intelligence der Renmin University.

Diese Woche gab FigureAI, ein Robotikunternehmen, an dem OpenAI, Microsoft, Bezos und Nvidia beteiligt sind, bekannt, dass es fast 700 Millionen US-Dollar an Finanzmitteln erhalten hat und plant, im nächsten Jahr einen humanoiden Roboter zu entwickeln, der selbstständig gehen kann. Und Teslas Optimus Prime hat immer wieder gute Nachrichten erhalten. Niemand zweifelt daran, dass dieses Jahr das Jahr sein wird, in dem humanoide Roboter explodieren. SanctuaryAI, ein in Kanada ansässiges Robotikunternehmen, hat kürzlich einen neuen humanoiden Roboter auf den Markt gebracht: Phoenix. Beamte behaupten, dass es viele Aufgaben autonom und mit der gleichen Geschwindigkeit wie Menschen erledigen kann. Pheonix, der weltweit erste Roboter, der Aufgaben autonom in menschlicher Geschwindigkeit erledigen kann, kann jedes Objekt sanft greifen, bewegen und elegant auf der linken und rechten Seite platzieren. Es kann Objekte autonom identifizieren

Kürzlich wurde die Militärwelt von der Nachricht überwältigt: US-Militärkampfflugzeuge können jetzt mithilfe von KI vollautomatische Luftkämpfe absolvieren. Ja, erst kürzlich wurde der KI-Kampfjet des US-Militärs zum ersten Mal der Öffentlichkeit zugänglich gemacht und sein Geheimnis gelüftet. Der vollständige Name dieses Jägers lautet „Variable Stability Simulator Test Aircraft“ (VISTA). Er wurde vom Minister der US-Luftwaffe persönlich geflogen, um einen Eins-gegen-eins-Luftkampf zu simulieren. Am 2. Mai startete US-Luftwaffenminister Frank Kendall mit einer X-62AVISTA auf der Edwards Air Force Base. Beachten Sie, dass während des einstündigen Fluges alle Flugaktionen autonom von der KI durchgeführt wurden! Kendall sagte: „In den letzten Jahrzehnten haben wir über das unbegrenzte Potenzial des autonomen Luft-Luft-Kampfes nachgedacht, aber es schien immer unerreichbar.“ Nun jedoch,
