Erstellen Sie Deep-Learning-Modelle mit TensorFlow und Keras
TensorFlow und Keras sind derzeit eines der beliebtesten Deep-Learning-Frameworks. Sie stellen nicht nur High-Level-APIs bereit, um das Erstellen und Trainieren von Deep-Learning-Modellen zu vereinfachen, sondern bieten auch eine Vielzahl von Ebenen und Modelltypen, um die Erstellung verschiedener Arten von Deep-Learning-Modellen zu erleichtern. Daher werden sie häufig zum Trainieren umfangreicher Deep-Learning-Modelle verwendet.
Wir werden TensorFlow und Keras verwenden, um ein Deep-Learning-Modell für die Bildklassifizierung zu erstellen. In diesem Beispiel verwenden wir den CIFAR-10-Datensatz, der 10 verschiedene Kategorien mit 6000 32x32-Farbbildern pro Kategorie enthält.
Zuerst müssen wir die notwendigen Bibliotheken und Datensätze importieren. Wir werden TensorFlow Version 2.0 und die Keras-API verwenden, um das Modell zu erstellen. Hier ist der Code zum Importieren der Bibliothek und des Datensatzes: „Python Tensorflow astf importieren aus Tensorflow Import Keras aus tensorflow.keras.datasets mnist importieren #Datensatz importieren (x_train, y_train), (x_test, y_test) = mnist.load_data() „ Das Obige ist der Code zum Importieren der Bibliothek und des Datensatzes. Wir verwenden die „tensorflow“-Bibliothek, um das Modell zu erstellen und verwenden den „mnist“-Datensatz als Beispieldatensatz.
import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.datasets import cifar10 # 加载CIFAR-10数据集 (x_train, y_train), (x_test, y_test) = cifar10.load_data() # 将像素值缩放到0到1之间 x_train = x_train.astype("float32") / 255.0 x_test = x_test.astype("float32") / 255.0 # 将标签从整数转换为one-hot编码 y_train = keras.utils.to_categorical(y_train, 10) y_test = keras.utils.to_categorical(y_test, 10)
Als nächstes definieren wir ein Faltungs-Neuronales Netzwerkmodell. Wir werden drei Faltungsschichten und drei Pooling-Schichten verwenden, um Merkmale zu extrahieren, und dann zwei vollständig verbundene Schichten zur Klassifizierung. Das Folgende ist unsere Modelldefinition:
model = keras.Sequential( [ # 第一个卷积层 layers.Conv2D(32, (3, 3), activation="relu", input_shape=(32, 32, 3)), layers.MaxPooling2D((2, 2)), # 第二个卷积层 layers.Conv2D(64, (3, 3), activation="relu"), layers.MaxPooling2D((2, 2)), # 第三个卷积层 layers.Conv2D(128, (3, 3), activation="relu"), layers.MaxPooling2D((2, 2)), # 展平层 layers.Flatten(), # 全连接层 layers.Dense(128, activation="relu"), layers.Dense(10, activation="softmax"), ] )
In diesem Modell verwenden wir die ReLU-Aktivierungsfunktion, eine häufig verwendete nichtlineare Funktion, die dem Modell beim Erlernen komplexer nichtlinearer Beziehungen helfen kann. Wir haben auch die Softmax-Aktivierungsfunktion für die Klassifizierung mehrerer Klassen verwendet.
Jetzt können wir das Modell kompilieren und mit dem Training beginnen. Wir werden den Adam-Optimierer und die Cross-Entropy-Loss-Funktion für das Modelltraining verwenden. Hier ist der Code: model.compile(optimizer='adam', loss='categorical_crossentropy') model.fit(X_train, y_train, epochs=10, batch_size=32)
# 编译模型 model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]) # 训练模型 history = model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test))
Nachdem das Training abgeschlossen ist, können wir den Testsatz verwenden, um die Leistung des Modells zu bewerten. Hier ist unser Code zur Bewertung des Modells:
# 在测试集上评估模型 test_loss, test_acc = model.evaluate(x_test, y_test) print("Test loss:", test_loss) print("Test accuracy:", test_acc)
Schließlich können wir den Trainingsverlauf verwenden, um den Trainings- und Validierungsverlust und die Genauigkeit des Modells darzustellen. Das Folgende ist der Code zum Zeichnen des Trainingsverlaufs:
import matplotlib.pyplot as plt # 绘制训练和验证损失 plt.plot(history.history["loss"], label="Training loss") plt.plot(history.history["val_loss"], label="Validation loss") plt.xlabel("Epoch") plt.ylabel("Loss") plt.legend() plt.show() # 绘制训练和验证准确率 plt.plot(history.history["accuracy"], label="Training accuracy") plt.plot(history.history["val_accuracy"], label="Validation accuracy") plt.xlabel("Epoch") plt.ylabel("Accuracy") plt.legend() plt.show()
Oben ist der gesamte Code für ein Beispiel eines Deep-Learning-Modells basierend auf TensorFlow und Keras. Wir haben ein Faltungs-Neuronales Netzwerkmodell unter Verwendung des CIFAR-10-Datensatzes für Bildklassifizierungsaufgaben erstellt.
Das obige ist der detaillierte Inhalt vonErstellen Sie Deep-Learning-Modelle mit TensorFlow und Keras. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



In den Bereichen maschinelles Lernen und Datenwissenschaft stand die Interpretierbarkeit von Modellen schon immer im Fokus von Forschern und Praktikern. Mit der weit verbreiteten Anwendung komplexer Modelle wie Deep Learning und Ensemble-Methoden ist das Verständnis des Entscheidungsprozesses des Modells besonders wichtig geworden. Explainable AI|XAI trägt dazu bei, Vertrauen in maschinelle Lernmodelle aufzubauen, indem es die Transparenz des Modells erhöht. Eine Verbesserung der Modelltransparenz kann durch Methoden wie den weit verbreiteten Einsatz mehrerer komplexer Modelle sowie der Entscheidungsprozesse zur Erläuterung der Modelle erreicht werden. Zu diesen Methoden gehören die Analyse der Merkmalsbedeutung, die Schätzung des Modellvorhersageintervalls, lokale Interpretierbarkeitsalgorithmen usw. Die Merkmalswichtigkeitsanalyse kann den Entscheidungsprozess des Modells erklären, indem sie den Grad des Einflusses des Modells auf die Eingabemerkmale bewertet. Schätzung des Modellvorhersageintervalls

In diesem Artikel wird vorgestellt, wie Überanpassung und Unteranpassung in Modellen für maschinelles Lernen mithilfe von Lernkurven effektiv identifiziert werden können. Unteranpassung und Überanpassung 1. Überanpassung Wenn ein Modell mit den Daten übertrainiert ist, sodass es daraus Rauschen lernt, spricht man von einer Überanpassung des Modells. Ein überangepasstes Modell lernt jedes Beispiel so perfekt, dass es ein unsichtbares/neues Beispiel falsch klassifiziert. Für ein überangepasstes Modell erhalten wir einen perfekten/nahezu perfekten Trainingssatzwert und einen schrecklichen Validierungssatz-/Testwert. Leicht geändert: „Ursache der Überanpassung: Verwenden Sie ein komplexes Modell, um ein einfaches Problem zu lösen und Rauschen aus den Daten zu extrahieren. Weil ein kleiner Datensatz als Trainingssatz möglicherweise nicht die korrekte Darstellung aller Daten darstellt. 2. Unteranpassung Heru.“

Heute diskutieren wir darüber, wie Deep-Learning-Technologie die Leistung von visionbasiertem SLAM (Simultaneous Localization and Mapping) in komplexen Umgebungen verbessern kann. Durch die Kombination von Methoden zur Tiefenmerkmalsextraktion und Tiefenanpassung stellen wir hier ein vielseitiges hybrides visuelles SLAM-System vor, das die Anpassung in anspruchsvollen Szenarien wie schlechten Lichtverhältnissen, dynamischer Beleuchtung, schwach strukturierten Bereichen und starkem Jitter verbessern soll. Unser System unterstützt mehrere Modi, einschließlich erweiterter Monokular-, Stereo-, Monokular-Trägheits- und Stereo-Trägheitskonfigurationen. Darüber hinaus wird analysiert, wie visuelles SLAM mit Deep-Learning-Methoden kombiniert werden kann, um andere Forschungen zu inspirieren. Durch umfangreiche Experimente mit öffentlichen Datensätzen und selbst abgetasteten Daten demonstrieren wir die Überlegenheit von SL-SLAM in Bezug auf Positionierungsgenauigkeit und Tracking-Robustheit.

In den 1950er Jahren wurde die künstliche Intelligenz (KI) geboren. Damals entdeckten Forscher, dass Maschinen menschenähnliche Aufgaben wie das Denken ausführen können. Später, in den 1960er Jahren, finanzierte das US-Verteidigungsministerium künstliche Intelligenz und richtete Labore für die weitere Entwicklung ein. Forscher finden Anwendungen für künstliche Intelligenz in vielen Bereichen, etwa bei der Erforschung des Weltraums und beim Überleben in extremen Umgebungen. Unter Weltraumforschung versteht man die Erforschung des Universums, das das gesamte Universum außerhalb der Erde umfasst. Der Weltraum wird als extreme Umgebung eingestuft, da sich seine Bedingungen von denen auf der Erde unterscheiden. Um im Weltraum zu überleben, müssen viele Faktoren berücksichtigt und Vorkehrungen getroffen werden. Wissenschaftler und Forscher glauben, dass die Erforschung des Weltraums und das Verständnis des aktuellen Zustands aller Dinge dazu beitragen können, die Funktionsweise des Universums zu verstehen und sich auf mögliche Umweltkrisen vorzubereiten

Zu den häufigsten Herausforderungen, mit denen Algorithmen für maschinelles Lernen in C++ konfrontiert sind, gehören Speicherverwaltung, Multithreading, Leistungsoptimierung und Wartbarkeit. Zu den Lösungen gehören die Verwendung intelligenter Zeiger, moderner Threading-Bibliotheken, SIMD-Anweisungen und Bibliotheken von Drittanbietern sowie die Einhaltung von Codierungsstilrichtlinien und die Verwendung von Automatisierungstools. Praktische Fälle zeigen, wie man die Eigen-Bibliothek nutzt, um lineare Regressionsalgorithmen zu implementieren, den Speicher effektiv zu verwalten und leistungsstarke Matrixoperationen zu nutzen.

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

Übersetzer |. Rezensiert von Li Rui |. Chonglou Modelle für künstliche Intelligenz (KI) und maschinelles Lernen (ML) werden heutzutage immer komplexer, und die von diesen Modellen erzeugten Ergebnisse sind eine Blackbox, die den Stakeholdern nicht erklärt werden kann. Explainable AI (XAI) zielt darauf ab, dieses Problem zu lösen, indem es Stakeholdern ermöglicht, die Funktionsweise dieser Modelle zu verstehen, sicherzustellen, dass sie verstehen, wie diese Modelle tatsächlich Entscheidungen treffen, und Transparenz in KI-Systemen, Vertrauen und Verantwortlichkeit zur Lösung dieses Problems gewährleistet. In diesem Artikel werden verschiedene Techniken der erklärbaren künstlichen Intelligenz (XAI) untersucht, um ihre zugrunde liegenden Prinzipien zu veranschaulichen. Mehrere Gründe, warum erklärbare KI von entscheidender Bedeutung ist. Vertrauen und Transparenz: Damit KI-Systeme allgemein akzeptiert und vertrauenswürdig sind, müssen Benutzer verstehen, wie Entscheidungen getroffen werden

MetaFAIR hat sich mit Harvard zusammengetan, um einen neuen Forschungsrahmen zur Optimierung der Datenverzerrung bereitzustellen, die bei der Durchführung groß angelegten maschinellen Lernens entsteht. Es ist bekannt, dass das Training großer Sprachmodelle oft Monate dauert und Hunderte oder sogar Tausende von GPUs verwendet. Am Beispiel des Modells LLaMA270B erfordert das Training insgesamt 1.720.320 GPU-Stunden. Das Training großer Modelle stellt aufgrund des Umfangs und der Komplexität dieser Arbeitsbelastungen einzigartige systemische Herausforderungen dar. In letzter Zeit haben viele Institutionen über Instabilität im Trainingsprozess beim Training generativer SOTA-KI-Modelle berichtet. Diese treten normalerweise in Form von Verlustspitzen auf. Beim PaLM-Modell von Google kam es beispielsweise während des Trainingsprozesses zu Instabilitäten. Numerische Voreingenommenheit ist die Hauptursache für diese Trainingsungenauigkeit.
