


Grundlegende Schritte zum Aufbau eines Faltungs-Neuronalen Netzwerks mit PyTorch
Convolutional Neural Network (CNN) ist ein Deep-Learning-Modell, das häufig bei Computer-Vision-Aufgaben verwendet wird. Im Vergleich zu vollständig verbundenen neuronalen Netzen verfügt CNN über weniger Parameter und leistungsfähigere Funktionen zur Merkmalsextraktion und eignet sich gut für Aufgaben wie Bildklassifizierung, Zielerkennung und Bildsegmentierung. Im Folgenden stellen wir vor, wie man ein grundlegendes CNN-Modell erstellt.
Convolutional Neural Network (CNN) ist ein Deep-Learning-Modell mit mehreren Faltungsschichten, Pooling-Schichten, Aktivierungsfunktionen und vollständig verbundenen Schichten. Die Faltungsschicht ist die Kernkomponente von CNN und wird zum Extrahieren von Merkmalen des Eingabebildes verwendet. Der Pooling-Layer kann die Größe der Feature-Map reduzieren und die Hauptmerkmale des Bildes beibehalten. Die Aktivierungsfunktion führt eine nichtlineare Transformation ein, um die Ausdrucksfähigkeit des Modells zu erhöhen. Die vollständig verbundene Ebene wandelt die Feature-Map in ein Ausgabeergebnis um. Durch die Kombination dieser Komponenten können wir ein grundlegendes Faltungs-Neuronales Netzwerk aufbauen. CNN eignet sich gut für Aufgaben wie Bildklassifizierung, Zielerkennung und Bilderzeugung und wird häufig im Bereich Computer Vision eingesetzt.
Zweitens müssen für die Struktur von CNN die Parameter jeder Faltungsschicht und Poolschicht bestimmt werden. Zu diesen Parametern gehören die Größe des Faltungskerns, die Anzahl der Faltungskerne und die Größe des Pooling-Kernels. Gleichzeitig ist es auch notwendig, die Dimensionen der Eingabedaten und die Dimensionen der Ausgabedaten zu bestimmen. Die Auswahl dieser Parameter muss in der Regel experimentell ermittelt werden. Ein gängiger Ansatz besteht darin, zunächst ein einfaches CNN-Modell zu erstellen und dann die Parameter schrittweise anzupassen, bis eine optimale Leistung erreicht ist.
Beim Training eines CNN-Modells müssen wir die Verlustfunktion und den Optimierer festlegen. Typischerweise wird häufig die Kreuzentropieverlustfunktion verwendet, während auch der stochastische Gradientenabstiegsoptimierer häufig verwendet wird. Während des Trainingsprozesses geben wir die Trainingsdaten stapelweise in das CNN-Modell ein und berechnen den Verlustwert basierend auf der Verlustfunktion. Verwenden Sie dann den Optimierer, um die Modellparameter zu aktualisieren und den Verlustwert zu reduzieren. Typischerweise sind mehrere Iterationen erforderlich, um das Training abzuschließen, wobei jede Iteration stapelweise Trainingsdaten in das Modell einspeist, bis eine vorgegebene Anzahl von Trainingsepochen erreicht ist oder bestimmte Leistungskriterien erfüllt sind.
Das Folgende ist ein Codebeispiel für den Aufbau eines grundlegenden Convolutional Neural Network (CNN) mit PyTorch:
import torch import torch.nn as nn class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) # 3个输入通道,6个输出通道,5x5的卷积核 self.pool = nn.MaxPool2d(2, 2) # 2x2的最大池化层 self.conv2 = nn.Conv2d(6, 16, 5) # 6个输入通道,16个输出通道,5x5的卷积核 self.fc1 = nn.Linear(16 * 5 * 5, 120) # 全连接层1,输入大小为16x5x5,输出大小为120 self.fc2 = nn.Linear(120, 84) # 全连接层2,输入大小为120,输出大小为84 self.fc3 = nn.Linear(84, 10) # 全连接层3,输入大小为84,输出大小为10(10个类别) def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) # 第一层卷积+激活函数+池化 x = self.pool(torch.relu(self.conv2(x))) # 第二层卷积+激活函数+池化 x = x.view(-1, 16 * 5 * 5) # 将特征图展开成一维向量 x = torch.relu(self.fc1(x)) # 第一层全连接+激活函数 x = torch.relu(self.fc2(x)) # 第二层全连接+激活函数 x = self.fc3(x) # 第三层全连接 return x
Der obige Code definiert eine Klasse namens Net, die von nn.Module erbt. Diese Klasse enthält Faltungsschichten, Pooling-Schichten und vollständig verbundene Schichten sowie die Vorwärtsmethode, mit der der Vorwärtsausbreitungsprozess des Modells definiert wird. In der __init__-Methode definieren wir zwei Faltungsschichten, drei vollständig verbundene Schichten und eine Pooling-Schicht. Bei der Vorwärtsmethode rufen wir diese Schichten nacheinander auf und verwenden die ReLU-Aktivierungsfunktion, um die Ausgaben der Faltungsschichten und vollständig verbundenen Schichten nichtlinear zu transformieren. Schließlich geben wir die Ausgabe der letzten vollständig verbundenen Schicht als Vorhersage des Modells zurück. Darüber hinaus sollte die Eingabe dieses CNN-Modells ein vierdimensionaler Tensor mit der Form (Batchgröße, Kanäle, Höhe, Breite) sein. Dabei ist „batch_size“ die Stapelgröße der Eingabedaten, „channels“ die Anzahl der Kanäle der Eingabedaten und „height“ und „width“ die Höhe bzw. Breite der Eingabedaten. In diesem Beispiel sollten die Eingabedaten ein RGB-Farbbild mit einer Kanalanzahl von 3 sein.
Das obige ist der detaillierte Inhalt vonGrundlegende Schritte zum Aufbau eines Faltungs-Neuronalen Netzwerks mit PyTorch. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



In Zeitreihendaten gibt es Abhängigkeiten zwischen Beobachtungen, sie sind also nicht unabhängig voneinander. Herkömmliche neuronale Netze behandeln jedoch jede Beobachtung als unabhängig, was die Fähigkeit des Modells zur Modellierung von Zeitreihendaten einschränkt. Um dieses Problem zu lösen, wurde das Recurrent Neural Network (RNN) eingeführt, das das Konzept des Speichers einführte, um die dynamischen Eigenschaften von Zeitreihendaten zu erfassen, indem Abhängigkeiten zwischen Datenpunkten im Netzwerk hergestellt werden. Durch wiederkehrende Verbindungen kann RNN frühere Informationen an die aktuelle Beobachtung weitergeben, um zukünftige Werte besser vorherzusagen. Dies macht RNN zu einem leistungsstarken Werkzeug für Aufgaben mit Zeitreihendaten. Aber wie erreicht RNN diese Art von Gedächtnis? RNN realisiert das Gedächtnis durch die Rückkopplungsschleife im neuronalen Netzwerk. Dies ist der Unterschied zwischen RNN und herkömmlichen neuronalen Netzwerken.

FLOPS ist einer der Standards zur Bewertung der Computerleistung und dient zur Messung der Anzahl der Gleitkommaoperationen pro Sekunde. In neuronalen Netzen wird FLOPS häufig verwendet, um die Rechenkomplexität des Modells und die Nutzung von Rechenressourcen zu bewerten. Es ist ein wichtiger Indikator zur Messung der Rechenleistung und Effizienz eines Computers. Ein neuronales Netzwerk ist ein komplexes Modell, das aus mehreren Neuronenschichten besteht und für Aufgaben wie Datenklassifizierung, Regression und Clustering verwendet wird. Das Training und die Inferenz neuronaler Netze erfordert eine große Anzahl von Matrixmultiplikationen, Faltungen und anderen Rechenoperationen, sodass die Rechenkomplexität sehr hoch ist. Mit FLOPS (FloatingPointOperationsperSecond) kann die Rechenkomplexität neuronaler Netze gemessen werden, um die Effizienz der Rechenressourcennutzung des Modells zu bewerten. FLOP

Das bidirektionale LSTM-Modell ist ein neuronales Netzwerk, das zur Textklassifizierung verwendet wird. Unten finden Sie ein einfaches Beispiel, das zeigt, wie bidirektionales LSTM für Textklassifizierungsaufgaben verwendet wird. Zuerst müssen wir die erforderlichen Bibliotheken und Module importieren: importosimportnumpyasnpfromkeras.preprocessing.textimportTokenizerfromkeras.preprocessing.sequenceimportpad_sequencesfromkeras.modelsimportSequentialfromkeras.layersimportDense,Em

Das Fuzzy-Neuronale Netzwerk ist ein Hybridmodell, das Fuzzy-Logik und neuronale Netzwerke kombiniert, um unscharfe oder unsichere Probleme zu lösen, die mit herkömmlichen neuronalen Netzwerken nur schwer zu bewältigen sind. Sein Design ist von der Unschärfe und Unsicherheit der menschlichen Wahrnehmung inspiriert und wird daher häufig in Steuerungssystemen, Mustererkennung, Data Mining und anderen Bereichen eingesetzt. Die Grundarchitektur eines Fuzzy-Neuronalen Netzwerks besteht aus einem Fuzzy-Subsystem und einem Neuronalen Subsystem. Das Fuzzy-Subsystem verwendet Fuzzy-Logik, um Eingabedaten zu verarbeiten und in Fuzzy-Sätze umzuwandeln, um die Unschärfe und Unsicherheit der Eingabedaten auszudrücken. Das neuronale Subsystem nutzt neuronale Netze zur Verarbeitung von Fuzzy-Sets für Aufgaben wie Klassifizierung, Regression oder Clustering. Durch die Interaktion zwischen dem Fuzzy-Subsystem und dem neuronalen Subsystem verfügt das Fuzzy-Neuronale Netzwerk über leistungsfähigere Verarbeitungsfähigkeiten und kann

SqueezeNet ist ein kleiner und präziser Algorithmus, der eine gute Balance zwischen hoher Genauigkeit und geringer Komplexität schafft und sich daher ideal für mobile und eingebettete Systeme mit begrenzten Ressourcen eignet. Im Jahr 2016 schlugen Forscher von DeepScale, der University of California, Berkeley und der Stanford University SqueezeNet vor, ein kompaktes und effizientes Faltungs-Neuronales Netzwerk (CNN). In den letzten Jahren haben Forscher mehrere Verbesserungen an SqueezeNet vorgenommen, darunter SqueezeNetv1.1 und SqueezeNetv2.0. Verbesserungen in beiden Versionen erhöhen nicht nur die Genauigkeit, sondern senken auch die Rechenkosten. Genauigkeit von SqueezeNetv1.1 im ImageNet-Datensatz

Faltungs-Neuronale Netze eignen sich gut für Aufgaben zur Bildrauschunterdrückung. Es nutzt die erlernten Filter, um das Rauschen zu filtern und so das Originalbild wiederherzustellen. In diesem Artikel wird die Methode zur Bildentrauschung basierend auf einem Faltungs-Neuronalen Netzwerk ausführlich vorgestellt. 1. Überblick über das Convolutional Neural Network Das Convolutional Neural Network ist ein Deep-Learning-Algorithmus, der eine Kombination aus mehreren Faltungsschichten, Pooling-Schichten und vollständig verbundenen Schichten verwendet, um Bildmerkmale zu lernen und zu klassifizieren. In der Faltungsschicht werden die lokalen Merkmale des Bildes durch Faltungsoperationen extrahiert und so die räumliche Korrelation im Bild erfasst. Die Pooling-Schicht reduziert den Rechenaufwand durch Reduzierung der Feature-Dimension und behält die Hauptfeatures bei. Die vollständig verbundene Schicht ist für die Zuordnung erlernter Merkmale und Beschriftungen zur Implementierung der Bildklassifizierung oder anderer Aufgaben verantwortlich. Das Design dieser Netzwerkstruktur macht das Faltungs-Neuronale Netzwerk für die Bildverarbeitung und -erkennung nützlich.

Rust ist eine Programmiersprache auf Systemebene, die sich auf Sicherheit, Leistung und Parallelität konzentriert. Ziel ist es, eine sichere und zuverlässige Programmiersprache bereitzustellen, die für Szenarien wie Betriebssysteme, Netzwerkanwendungen und eingebettete Systeme geeignet ist. Die Sicherheit von Rust beruht hauptsächlich auf zwei Aspekten: dem Eigentumssystem und dem Kreditprüfer. Das Besitzsystem ermöglicht es dem Compiler, den Code zur Kompilierungszeit auf Speicherfehler zu überprüfen und so häufige Speichersicherheitsprobleme zu vermeiden. Indem Rust die Überprüfung der Eigentumsübertragungen von Variablen zur Kompilierungszeit erzwingt, stellt Rust sicher, dass Speicherressourcen ordnungsgemäß verwaltet und freigegeben werden. Der Borrow-Checker analysiert den Lebenszyklus der Variablen, um sicherzustellen, dass nicht mehrere Threads gleichzeitig auf dieselbe Variable zugreifen, wodurch häufige Sicherheitsprobleme bei der Parallelität vermieden werden. Durch die Kombination dieser beiden Mechanismen ist Rust in der Lage, Folgendes bereitzustellen

Das Siamese Neural Network ist eine einzigartige künstliche neuronale Netzwerkstruktur. Es besteht aus zwei identischen neuronalen Netzen mit denselben Parametern und Gewichten. Gleichzeitig teilen die beiden Netzwerke auch die gleichen Eingabedaten. Dieses Design wurde von Zwillingen inspiriert, da die beiden neuronalen Netze strukturell identisch sind. Das Prinzip des siamesischen neuronalen Netzwerks besteht darin, bestimmte Aufgaben wie Bildabgleich, Textabgleich und Gesichtserkennung durch den Vergleich der Ähnlichkeit oder des Abstands zwischen zwei Eingabedaten auszuführen. Während des Trainings versucht das Netzwerk, ähnliche Daten benachbarten Regionen und unterschiedliche Daten entfernten Regionen zuzuordnen. Auf diese Weise kann das Netzwerk lernen, verschiedene Daten zu klassifizieren oder abzugleichen, um entsprechende Ergebnisse zu erzielen
