


Eine Fallstudie zur Verwendung des bidirektionalen LSTM-Modells zur Textklassifizierung
Das bidirektionale LSTM-Modell ist ein neuronales Netzwerk, das zur Textklassifizierung verwendet wird. Unten finden Sie ein einfaches Beispiel, das zeigt, wie bidirektionales LSTM für Textklassifizierungsaufgaben verwendet wird.
Zuerst müssen wir die erforderlichen Bibliotheken und Module importieren:
import os import numpy as np from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.models import Sequential from keras.layers import Dense, Embedding, Bidirectional, LSTM from sklearn.model_selection import train_test_split
Als nächstes müssen wir den Datensatz vorbereiten. Hier gehen wir davon aus, dass der Datensatz bereits im angegebenen Pfad vorhanden ist und drei Dateien enthält: train.txt, dev.txt und test.txt. Jede Datei enthält eine Textsequenz und entsprechende Tags. Wir können den Datensatz mit dem folgenden Code laden:
def load_imdb_data(path): assert os.path.exists(path) trainset, devset, testset = [], [], [] with open(os.path.join(path, "train.txt"), "r") as fr: for line in fr: sentence_label, sentence = line.strip().lower().split("\t", maxsplit=1) trainset.append((sentence, sentence_label)) with open(os.path.join(path, "dev.txt"), "r") as fr: for line in fr: sentence_label, sentence = line.strip().lower().split("\t", maxsplit=1) devset.append((sentence, sentence_label)) with open(os.path.join(path, "test.txt"), "r") as fr: for line in fr: sentence_label, sentence = line.strip().lower().split("\t", maxsplit=1) testset.append((sentence, sentence_label)) return trainset, devset, testset
Nach dem Laden des Datensatzes können wir den Text vorverarbeiten und serialisieren. Hier verwenden wir Tokenizer zur Textsegmentierung und füllen dann die Indexsequenz jedes Wortes auf die gleiche Länge auf, damit sie auf das LSTM-Modell angewendet werden kann.
max_features = 20000 maxlen = 80 # cut texts after this number of words (among top max_features most common words) batch_size = 32 print('Pad & split data into training set and dev set') x_train, y_train = [], [] for sent, label in trainset: x_train.append(sent) y_train.append(label) x_train, y_train = pad_sequences(x_train, maxlen=maxlen), np.array(y_train) x_train, y_train = np.array(x_train), np.array(y_train) x_dev, y_dev = [], [] for sent, label in devset: x_dev.append(sent) y_dev.append(label) x_dev, y_dev = pad_sequences(x_dev, maxlen=maxlen), np.array(y_dev) x_dev, y_dev = np.array(x_dev), np.array(y_dev)
Als nächstes können wir ein bidirektionales LSTM-Modell erstellen. In diesem Modell verwenden wir zwei LSTM-Schichten, eine für die Weiterleitung von Informationen und eine für die Rückwärtsweitergabe von Informationen. Die Ausgaben dieser beiden LSTM-Ebenen werden verkettet, um einen leistungsfähigeren Vektor zu bilden, der den Text darstellt. Schließlich verwenden wir eine vollständig verbundene Schicht zur Klassifizierung.
print('Build model...') model = Sequential() model.add(Embedding(max_features, 128, input_length=maxlen)) model.add(Bidirectional(LSTM(64))) model.add(LSTM(64)) model.add(Dense(1, activation='sigmoid')) print('Compile model...') model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
Jetzt können wir das Modell trainieren. Wir werden den Entwicklungsdatensatz als Validierungsdaten verwenden, um sicherzustellen, dass wir während des Trainings nicht überpassen.
epochs = 10 batch_size = 64 history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_dev, y_dev))
Nachdem das Training abgeschlossen ist, können wir die Leistung des Modells am Testsatz bewerten.
test_loss, test_acc = model.evaluate(x_test, y_test) print('Test accuracy:', test_acc)
Das Obige ist ein Beispiel für die Textklassifizierung mithilfe eines einfachen bidirektionalen LSTM-Modells. Sie können auch versuchen, die Parameter des Modells anzupassen, z. B. die Anzahl der Schichten, die Anzahl der Neuronen, Optimierer usw., um eine bessere Leistung zu erzielen. Oder verwenden Sie vorab trainierte Worteinbettungen (wie Word2Vec oder GloVe), um die Einbettungsebene zu ersetzen und mehr semantische Informationen zu erfassen.
Das obige ist der detaillierte Inhalt vonEine Fallstudie zur Verwendung des bidirektionalen LSTM-Modells zur Textklassifizierung. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



In Zeitreihendaten gibt es Abhängigkeiten zwischen Beobachtungen, sie sind also nicht unabhängig voneinander. Herkömmliche neuronale Netze behandeln jedoch jede Beobachtung als unabhängig, was die Fähigkeit des Modells zur Modellierung von Zeitreihendaten einschränkt. Um dieses Problem zu lösen, wurde das Recurrent Neural Network (RNN) eingeführt, das das Konzept des Speichers einführte, um die dynamischen Eigenschaften von Zeitreihendaten zu erfassen, indem Abhängigkeiten zwischen Datenpunkten im Netzwerk hergestellt werden. Durch wiederkehrende Verbindungen kann RNN frühere Informationen an die aktuelle Beobachtung weitergeben, um zukünftige Werte besser vorherzusagen. Dies macht RNN zu einem leistungsstarken Werkzeug für Aufgaben mit Zeitreihendaten. Aber wie erreicht RNN diese Art von Gedächtnis? RNN realisiert das Gedächtnis durch die Rückkopplungsschleife im neuronalen Netzwerk. Dies ist der Unterschied zwischen RNN und herkömmlichen neuronalen Netzwerken.

Das bidirektionale LSTM-Modell ist ein neuronales Netzwerk, das zur Textklassifizierung verwendet wird. Unten finden Sie ein einfaches Beispiel, das zeigt, wie bidirektionales LSTM für Textklassifizierungsaufgaben verwendet wird. Zuerst müssen wir die erforderlichen Bibliotheken und Module importieren: importosimportnumpyasnpfromkeras.preprocessing.textimportTokenizerfromkeras.preprocessing.sequenceimportpad_sequencesfromkeras.modelsimportSequentialfromkeras.layersimportDense,Em

FLOPS ist einer der Standards zur Bewertung der Computerleistung und dient zur Messung der Anzahl der Gleitkommaoperationen pro Sekunde. In neuronalen Netzen wird FLOPS häufig verwendet, um die Rechenkomplexität des Modells und die Nutzung von Rechenressourcen zu bewerten. Es ist ein wichtiger Indikator zur Messung der Rechenleistung und Effizienz eines Computers. Ein neuronales Netzwerk ist ein komplexes Modell, das aus mehreren Neuronenschichten besteht und für Aufgaben wie Datenklassifizierung, Regression und Clustering verwendet wird. Das Training und die Inferenz neuronaler Netze erfordert eine große Anzahl von Matrixmultiplikationen, Faltungen und anderen Rechenoperationen, sodass die Rechenkomplexität sehr hoch ist. Mit FLOPS (FloatingPointOperationsperSecond) kann die Rechenkomplexität neuronaler Netze gemessen werden, um die Effizienz der Rechenressourcennutzung des Modells zu bewerten. FLOP

SqueezeNet ist ein kleiner und präziser Algorithmus, der eine gute Balance zwischen hoher Genauigkeit und geringer Komplexität schafft und sich daher ideal für mobile und eingebettete Systeme mit begrenzten Ressourcen eignet. Im Jahr 2016 schlugen Forscher von DeepScale, der University of California, Berkeley und der Stanford University SqueezeNet vor, ein kompaktes und effizientes Faltungs-Neuronales Netzwerk (CNN). In den letzten Jahren haben Forscher mehrere Verbesserungen an SqueezeNet vorgenommen, darunter SqueezeNetv1.1 und SqueezeNetv2.0. Verbesserungen in beiden Versionen erhöhen nicht nur die Genauigkeit, sondern senken auch die Rechenkosten. Genauigkeit von SqueezeNetv1.1 im ImageNet-Datensatz

Das Fuzzy-Neuronale Netzwerk ist ein Hybridmodell, das Fuzzy-Logik und neuronale Netzwerke kombiniert, um unscharfe oder unsichere Probleme zu lösen, die mit herkömmlichen neuronalen Netzwerken nur schwer zu bewältigen sind. Sein Design ist von der Unschärfe und Unsicherheit der menschlichen Wahrnehmung inspiriert und wird daher häufig in Steuerungssystemen, Mustererkennung, Data Mining und anderen Bereichen eingesetzt. Die Grundarchitektur eines Fuzzy-Neuronalen Netzwerks besteht aus einem Fuzzy-Subsystem und einem Neuronalen Subsystem. Das Fuzzy-Subsystem verwendet Fuzzy-Logik, um Eingabedaten zu verarbeiten und in Fuzzy-Sätze umzuwandeln, um die Unschärfe und Unsicherheit der Eingabedaten auszudrücken. Das neuronale Subsystem nutzt neuronale Netze zur Verarbeitung von Fuzzy-Sets für Aufgaben wie Klassifizierung, Regression oder Clustering. Durch die Interaktion zwischen dem Fuzzy-Subsystem und dem neuronalen Subsystem verfügt das Fuzzy-Neuronale Netzwerk über leistungsfähigere Verarbeitungsfähigkeiten und kann

Faltungs-Neuronale Netze eignen sich gut für Aufgaben zur Bildrauschunterdrückung. Es nutzt die erlernten Filter, um das Rauschen zu filtern und so das Originalbild wiederherzustellen. In diesem Artikel wird die Methode zur Bildentrauschung basierend auf einem Faltungs-Neuronalen Netzwerk ausführlich vorgestellt. 1. Überblick über das Convolutional Neural Network Das Convolutional Neural Network ist ein Deep-Learning-Algorithmus, der eine Kombination aus mehreren Faltungsschichten, Pooling-Schichten und vollständig verbundenen Schichten verwendet, um Bildmerkmale zu lernen und zu klassifizieren. In der Faltungsschicht werden die lokalen Merkmale des Bildes durch Faltungsoperationen extrahiert und so die räumliche Korrelation im Bild erfasst. Die Pooling-Schicht reduziert den Rechenaufwand durch Reduzierung der Feature-Dimension und behält die Hauptfeatures bei. Die vollständig verbundene Schicht ist für die Zuordnung erlernter Merkmale und Beschriftungen zur Implementierung der Bildklassifizierung oder anderer Aufgaben verantwortlich. Das Design dieser Netzwerkstruktur macht das Faltungs-Neuronale Netzwerk für die Bildverarbeitung und -erkennung nützlich.

Dilatierte Faltung und erweiterte Faltung sind häufig verwendete Operationen in Faltungs-Neuronalen Netzen. In diesem Artikel werden ihre Unterschiede und Beziehungen im Detail vorgestellt. 1. Erweiterte Faltung Die erweiterte Faltung, auch als erweiterte Faltung oder erweiterte Faltung bekannt, ist eine Operation in einem Faltungs-Neuronalen Netzwerk. Es handelt sich um eine Erweiterung, die auf der herkömmlichen Faltungsoperation basiert und das Empfangsfeld des Faltungskerns durch Einfügen von Löchern in den Faltungskern erhöht. Auf diese Weise kann das Netzwerk ein breiteres Spektrum an Funktionen besser erfassen. Die erweiterte Faltung wird im Bereich der Bildverarbeitung häufig verwendet und kann die Leistung des Netzwerks verbessern, ohne die Anzahl der Parameter und den Rechenaufwand zu erhöhen. Durch die Erweiterung des Empfangsfelds des Faltungskerns kann die erweiterte Faltung die globalen Informationen im Bild besser verarbeiten und dadurch den Effekt der Merkmalsextraktion verbessern. Die Hauptidee der erweiterten Faltung besteht darin, einige einzuführen

Rust ist eine Programmiersprache auf Systemebene, die sich auf Sicherheit, Leistung und Parallelität konzentriert. Ziel ist es, eine sichere und zuverlässige Programmiersprache bereitzustellen, die für Szenarien wie Betriebssysteme, Netzwerkanwendungen und eingebettete Systeme geeignet ist. Die Sicherheit von Rust beruht hauptsächlich auf zwei Aspekten: dem Eigentumssystem und dem Kreditprüfer. Das Besitzsystem ermöglicht es dem Compiler, den Code zur Kompilierungszeit auf Speicherfehler zu überprüfen und so häufige Speichersicherheitsprobleme zu vermeiden. Indem Rust die Überprüfung der Eigentumsübertragungen von Variablen zur Kompilierungszeit erzwingt, stellt Rust sicher, dass Speicherressourcen ordnungsgemäß verwaltet und freigegeben werden. Der Borrow-Checker analysiert den Lebenszyklus der Variablen, um sicherzustellen, dass nicht mehrere Threads gleichzeitig auf dieselbe Variable zugreifen, wodurch häufige Sicherheitsprobleme bei der Parallelität vermieden werden. Durch die Kombination dieser beiden Mechanismen ist Rust in der Lage, Folgendes bereitzustellen
