Heim Technologie-Peripheriegeräte KI Welche Klassifizierungsmethoden gibt es, um mit unausgeglichenen Datensätzen umzugehen?

Welche Klassifizierungsmethoden gibt es, um mit unausgeglichenen Datensätzen umzugehen?

Jan 24, 2024 pm 03:00 PM
机器学习

Welche Klassifizierungsmethoden gibt es, um mit unausgeglichenen Datensätzen umzugehen?

Im Bereich des maschinellen Lernens sind unausgeglichene Datensätze ein häufiges Problem, was auf den großen Unterschied in der Anzahl der Stichproben verschiedener Kategorien im Trainingsdatensatz zurückzuführen ist. Beispielsweise ist bei einem binären Klassifizierungsproblem die Anzahl der positiven Stichproben viel kleiner als die Anzahl der negativen Stichproben. Dies führt dazu, dass das trainierte Modell eher dazu neigt, eine größere Anzahl von Kategorien vorherzusagen und eine kleinere Anzahl von Kategorien zu ignorieren, was sich wiederum auf die Leistung des Modells auswirkt. Daher müssen unausgeglichene Datensätze klassifiziert werden, um die Modellleistung zu verbessern.

In diesem Artikel wird anhand eines konkreten Beispiels veranschaulicht, wie unausgeglichene Datensätze klassifiziert werden. Angenommen, wir haben ein binäres Klassifizierungsproblem, bei dem die Anzahl der positiven Proben 100, die Anzahl der negativen Proben 1000 und die Dimension des Merkmalsvektors 10 beträgt. Um mit unausgeglichenen Datensätzen umzugehen, können die folgenden Schritte unternommen werden: 1. Verwenden Sie Undersampling- oder Oversampling-Techniken, um die Daten auszugleichen, beispielsweise den SMOTE-Algorithmus. 2. Verwenden Sie geeignete Bewertungsindikatoren wie Genauigkeit, Präzision, Rückruf usw., um die Leistung des Modells zu bewerten. 3. Passen Sie den Schwellenwert des Klassifikators an, um die Leistung des Modells für Minderheitsklassen zu optimieren. 4. Verwenden Sie Ensemble-Lernmethoden wie Random Forests oder Gradient Boosting Trees, um die Generalisierungsleistung des Modells zu verbessern

1 Verstehen Sie den Datensatz: Analysieren Sie den Datensatz und stellen Sie fest, dass die Anzahl der positiven Stichproben viel geringer ist als die Anzahl der negativen Proben.

2. Wählen Sie geeignete Bewertungsmetriken: Aufgrund der Unausgewogenheit des Datensatzes wählen wir Präzision, Rückruf und F1-Wert als Bewertungsmetriken.

Sie können den SMOTE-Algorithmus verwenden, um Minderheitenklassenstichproben zu synthetisieren und den Datensatz auszugleichen. Dies kann mithilfe der imblearn-Bibliothek implementiert werden.

from imblearn.over_sampling import SMOTE
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, recall_score, f1_score

# 加载数据集并划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 使用SMOTE算法进行数据重采样
smote = SMOTE(random_state=42)
X_train_resampled, y_train_resampled = smote.fit_resample(X_train, y_train)

# 训练逻辑回归模型
model = LogisticRegression(random_state=42)
model.fit(X_train_resampled, y_train_resampled)

# 在测试集上进行预测
y_pred = model.predict(X_test)

# 计算评估指标
accuracy = accuracy_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)

print("Accuracy: {:.2f}%, Recall: {:.2f}%, F1: {:.2f}%".format(accuracy*100, recall*100, f1*100))
Nach dem Login kopieren

4. Anpassung des Klassifizierungsalgorithmus: Beim Training des Modells können Sie Kategoriegewichte festlegen, um den Datensatz auszugleichen. Beispielsweise kann im logistischen Regressionsalgorithmus der Parameter class_weight so eingestellt werden, dass die Anzahl der Stichproben in verschiedenen Kategorien ausgeglichen wird.

# 训练逻辑回归模型并设置类别权重
model = LogisticRegression(random_state=42, class_weight="balanced")
model.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = model.predict(X_test)

# 计算评估指标
accuracy = accuracy_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)

print("Accuracy: {:.2f}%, Recall: {:.2f}%, F1: {:.2f}%".format(accuracy*100, recall*100, f1*100))
Nach dem Login kopieren

5. Ensemble-Lernalgorithmus: Wir können den Random-Forest-Algorithmus zum Ensemble-Lernen verwenden. Konkret kann es mithilfe der Sklearn-Bibliothek in Python implementiert werden:

from sklearn.ensemble import RandomForestClassifier

# 训练随机森林模型
model = RandomForestClassifier(random_state=42)
model.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = model.predict(X_test)

# 计算评估指标
accuracy = accuracy_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)

print("Accuracy: {:.2f}%, Recall: {:.2f}%, F1: {:.2f}%".format(accuracy*100, recall*100, f1*100))
Nach dem Login kopieren

Zusammenfassend umfassen Methoden zum Umgang mit unausgeglichenen Datensätzen Daten-Resampling, Anpassung des Klassifizierungsalgorithmus und Ensemble-Lernalgorithmen. Basierend auf dem spezifischen Problem muss die geeignete Methode ausgewählt und das Modell bewertet und angepasst werden, um eine bessere Leistung zu erzielen.

Das obige ist der detaillierte Inhalt vonWelche Klassifizierungsmethoden gibt es, um mit unausgeglichenen Datensätzen umzugehen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

15 empfohlene kostenlose Open-Source-Bildanmerkungstools 15 empfohlene kostenlose Open-Source-Bildanmerkungstools Mar 28, 2024 pm 01:21 PM

Bei der Bildanmerkung handelt es sich um das Verknüpfen von Beschriftungen oder beschreibenden Informationen mit Bildern, um dem Bildinhalt eine tiefere Bedeutung und Erklärung zu verleihen. Dieser Prozess ist entscheidend für maschinelles Lernen, das dabei hilft, Sehmodelle zu trainieren, um einzelne Elemente in Bildern genauer zu identifizieren. Durch das Hinzufügen von Anmerkungen zu Bildern kann der Computer die Semantik und den Kontext hinter den Bildern verstehen und so den Bildinhalt besser verstehen und analysieren. Die Bildanmerkung hat ein breites Anwendungsspektrum und deckt viele Bereiche ab, z. B. Computer Vision, Verarbeitung natürlicher Sprache und Diagramm-Vision-Modelle. Sie verfügt über ein breites Anwendungsspektrum, z. B. zur Unterstützung von Fahrzeugen bei der Identifizierung von Hindernissen auf der Straße und bei der Erkennung und Diagnose von Krankheiten durch medizinische Bilderkennung. In diesem Artikel werden hauptsächlich einige bessere Open-Source- und kostenlose Bildanmerkungstools empfohlen. 1.Makesens

In diesem Artikel erfahren Sie mehr über SHAP: Modellerklärung für maschinelles Lernen In diesem Artikel erfahren Sie mehr über SHAP: Modellerklärung für maschinelles Lernen Jun 01, 2024 am 10:58 AM

In den Bereichen maschinelles Lernen und Datenwissenschaft stand die Interpretierbarkeit von Modellen schon immer im Fokus von Forschern und Praktikern. Mit der weit verbreiteten Anwendung komplexer Modelle wie Deep Learning und Ensemble-Methoden ist das Verständnis des Entscheidungsprozesses des Modells besonders wichtig geworden. Explainable AI|XAI trägt dazu bei, Vertrauen in maschinelle Lernmodelle aufzubauen, indem es die Transparenz des Modells erhöht. Eine Verbesserung der Modelltransparenz kann durch Methoden wie den weit verbreiteten Einsatz mehrerer komplexer Modelle sowie der Entscheidungsprozesse zur Erläuterung der Modelle erreicht werden. Zu diesen Methoden gehören die Analyse der Merkmalsbedeutung, die Schätzung des Modellvorhersageintervalls, lokale Interpretierbarkeitsalgorithmen usw. Die Merkmalswichtigkeitsanalyse kann den Entscheidungsprozess des Modells erklären, indem sie den Grad des Einflusses des Modells auf die Eingabemerkmale bewertet. Schätzung des Modellvorhersageintervalls

Identifizieren Sie Über- und Unteranpassung anhand von Lernkurven Identifizieren Sie Über- und Unteranpassung anhand von Lernkurven Apr 29, 2024 pm 06:50 PM

In diesem Artikel wird vorgestellt, wie Überanpassung und Unteranpassung in Modellen für maschinelles Lernen mithilfe von Lernkurven effektiv identifiziert werden können. Unteranpassung und Überanpassung 1. Überanpassung Wenn ein Modell mit den Daten übertrainiert ist, sodass es daraus Rauschen lernt, spricht man von einer Überanpassung des Modells. Ein überangepasstes Modell lernt jedes Beispiel so perfekt, dass es ein unsichtbares/neues Beispiel falsch klassifiziert. Für ein überangepasstes Modell erhalten wir einen perfekten/nahezu perfekten Trainingssatzwert und einen schrecklichen Validierungssatz-/Testwert. Leicht geändert: „Ursache der Überanpassung: Verwenden Sie ein komplexes Modell, um ein einfaches Problem zu lösen und Rauschen aus den Daten zu extrahieren. Weil ein kleiner Datensatz als Trainingssatz möglicherweise nicht die korrekte Darstellung aller Daten darstellt. 2. Unteranpassung Heru.“

Transparent! Eine ausführliche Analyse der Prinzipien der wichtigsten Modelle des maschinellen Lernens! Transparent! Eine ausführliche Analyse der Prinzipien der wichtigsten Modelle des maschinellen Lernens! Apr 12, 2024 pm 05:55 PM

Laienhaft ausgedrückt ist ein Modell für maschinelles Lernen eine mathematische Funktion, die Eingabedaten einer vorhergesagten Ausgabe zuordnet. Genauer gesagt ist ein Modell für maschinelles Lernen eine mathematische Funktion, die Modellparameter anpasst, indem sie aus Trainingsdaten lernt, um den Fehler zwischen der vorhergesagten Ausgabe und der wahren Bezeichnung zu minimieren. Beim maschinellen Lernen gibt es viele Modelle, z. B. logistische Regressionsmodelle, Entscheidungsbaummodelle, Support-Vektor-Maschinenmodelle usw. Jedes Modell verfügt über seine anwendbaren Datentypen und Problemtypen. Gleichzeitig gibt es viele Gemeinsamkeiten zwischen verschiedenen Modellen oder es gibt einen verborgenen Weg für die Modellentwicklung. Am Beispiel des konnektionistischen Perzeptrons können wir es durch Erhöhen der Anzahl verborgener Schichten des Perzeptrons in ein tiefes neuronales Netzwerk umwandeln. Wenn dem Perzeptron eine Kernelfunktion hinzugefügt wird, kann es in eine SVM umgewandelt werden. Dieses hier

Die Entwicklung der künstlichen Intelligenz in der Weltraumforschung und der Siedlungstechnik Die Entwicklung der künstlichen Intelligenz in der Weltraumforschung und der Siedlungstechnik Apr 29, 2024 pm 03:25 PM

In den 1950er Jahren wurde die künstliche Intelligenz (KI) geboren. Damals entdeckten Forscher, dass Maschinen menschenähnliche Aufgaben wie das Denken ausführen können. Später, in den 1960er Jahren, finanzierte das US-Verteidigungsministerium künstliche Intelligenz und richtete Labore für die weitere Entwicklung ein. Forscher finden Anwendungen für künstliche Intelligenz in vielen Bereichen, etwa bei der Erforschung des Weltraums und beim Überleben in extremen Umgebungen. Unter Weltraumforschung versteht man die Erforschung des Universums, das das gesamte Universum außerhalb der Erde umfasst. Der Weltraum wird als extreme Umgebung eingestuft, da sich seine Bedingungen von denen auf der Erde unterscheiden. Um im Weltraum zu überleben, müssen viele Faktoren berücksichtigt und Vorkehrungen getroffen werden. Wissenschaftler und Forscher glauben, dass die Erforschung des Weltraums und das Verständnis des aktuellen Zustands aller Dinge dazu beitragen können, die Funktionsweise des Universums zu verstehen und sich auf mögliche Umweltkrisen vorzubereiten

Implementierung von Algorithmen für maschinelles Lernen in C++: Häufige Herausforderungen und Lösungen Implementierung von Algorithmen für maschinelles Lernen in C++: Häufige Herausforderungen und Lösungen Jun 03, 2024 pm 01:25 PM

Zu den häufigsten Herausforderungen, mit denen Algorithmen für maschinelles Lernen in C++ konfrontiert sind, gehören Speicherverwaltung, Multithreading, Leistungsoptimierung und Wartbarkeit. Zu den Lösungen gehören die Verwendung intelligenter Zeiger, moderner Threading-Bibliotheken, SIMD-Anweisungen und Bibliotheken von Drittanbietern sowie die Einhaltung von Codierungsstilrichtlinien und die Verwendung von Automatisierungstools. Praktische Fälle zeigen, wie man die Eigen-Bibliothek nutzt, um lineare Regressionsalgorithmen zu implementieren, den Speicher effektiv zu verwalten und leistungsstarke Matrixoperationen zu nutzen.

Fünf Schulen des maschinellen Lernens, die Sie nicht kennen Fünf Schulen des maschinellen Lernens, die Sie nicht kennen Jun 05, 2024 pm 08:51 PM

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

Erklärbare KI: Erklären komplexer KI/ML-Modelle Erklärbare KI: Erklären komplexer KI/ML-Modelle Jun 03, 2024 pm 10:08 PM

Übersetzer |. Rezensiert von Li Rui |. Chonglou Modelle für künstliche Intelligenz (KI) und maschinelles Lernen (ML) werden heutzutage immer komplexer, und die von diesen Modellen erzeugten Ergebnisse sind eine Blackbox, die den Stakeholdern nicht erklärt werden kann. Explainable AI (XAI) zielt darauf ab, dieses Problem zu lösen, indem es Stakeholdern ermöglicht, die Funktionsweise dieser Modelle zu verstehen, sicherzustellen, dass sie verstehen, wie diese Modelle tatsächlich Entscheidungen treffen, und Transparenz in KI-Systemen, Vertrauen und Verantwortlichkeit zur Lösung dieses Problems gewährleistet. In diesem Artikel werden verschiedene Techniken der erklärbaren künstlichen Intelligenz (XAI) untersucht, um ihre zugrunde liegenden Prinzipien zu veranschaulichen. Mehrere Gründe, warum erklärbare KI von entscheidender Bedeutung ist. Vertrauen und Transparenz: Damit KI-Systeme allgemein akzeptiert und vertrauenswürdig sind, müssen Benutzer verstehen, wie Entscheidungen getroffen werden

See all articles