


Numpy-Funktion: umfassende Analyse und eingehende Anwendung
Detaillierte Erklärung der Numpy-Funktionen: vom Anfänger bis zum Meister
Einführung:
Im Bereich Datenwissenschaft und maschinelles Lernen ist Numpy eine sehr wichtige Python-Bibliothek. Es bietet effiziente und leistungsstarke Werkzeuge zur mehrdimensionalen Array-Manipulation, die die Verarbeitung großer Datenmengen einfach und schnell machen. In diesem Artikel werden einige der am häufigsten verwendeten Funktionen in der Numpy-Bibliothek ausführlich vorgestellt, einschließlich Array-Erstellung, Indizierung, Slicing, Operationen und Transformationen, und es werden auch spezifische Codebeispiele gegeben.
1. Array-Erstellung
-
Verwenden Sie die Funktion numpy.array(), um ein Array zu erstellen.
import numpy as np # 创建一维数组 arr1 = np.array([1, 2, 3, 4, 5]) print(arr1) # 创建二维数组 arr2 = np.array([[1, 2, 3], [4, 5, 6]]) print(arr2) # 创建全0/1数组 arr_zeros = np.zeros((2, 3)) print(arr_zeros) arr_ones = np.ones((2, 3)) print(arr_ones) # 创建指定范围内的数组 arr_range = np.arange(0, 10, 2) print(arr_range)
Nach dem Login kopieren
2. Array-Indizierung und Slicing
Verwenden Sie den Index, um auf Array-Elemente zuzugreifen.
import numpy as np arr = np.array([1, 2, 3, 4, 5]) print(arr[0]) print(arr[2:4])
Nach dem Login kopierenVerwenden Sie die boolesche Indizierung, um Elemente auszuwählen, die eine Bedingung erfüllen.
import numpy as np arr = np.array([1, 2, 3, 4, 5]) print(arr[arr > 3])
Nach dem Login kopieren
3. Array-Operationen
Grundlegende Operationen auf Arrays.
import numpy as np arr1 = np.array([1, 2, 3]) arr2 = np.array([4, 5, 6]) # 加法 print(arr1 + arr2) # 减法 print(arr1 - arr2) # 乘法 print(arr1 * arr2) # 除法 print(arr1 / arr2) # 矩阵乘法 print(np.dot(arr1, arr2))
Nach dem Login kopierenAggregationsoperationen für Arrays.
import numpy as np arr = np.array([1, 2, 3, 4, 5]) # 求和 print(np.sum(arr)) # 求最大值 print(np.max(arr)) # 求最小值 print(np.min(arr)) # 求平均值 print(np.mean(arr))
Nach dem Login kopieren
4. Array-Transformation
Verwenden Sie die Funktion reshape(), um die Form des Arrays zu ändern.
import numpy as np arr = np.arange(10) print(arr) reshaped_arr = arr.reshape((2, 5)) print(reshaped_arr)
Nach dem Login kopierenVerwenden Sie die Funktion flatten(), um ein mehrdimensionales Array in ein eindimensionales Array umzuwandeln.
import numpy as np arr = np.array([[1, 2, 3], [4, 5, 6]]) print(arr) flatten_arr = arr.flatten() print(flatten_arr)
Nach dem Login kopieren
Fazit:
Dieser Artikel bietet eine detaillierte Einführung in einige allgemeine Funktionen der Numpy-Bibliothek, einschließlich Array-Erstellung, Indizierung, Slicing, Operationen und Transformationen. Die leistungsstarken Funktionen der Numpy-Bibliothek können uns dabei helfen, große Datenmengen effizient zu verarbeiten und die Effizienz von Datenwissenschaft und maschinellem Lernen zu verbessern. Ich hoffe, dass dieser Artikel den Lesern helfen kann, die Funktionen der Numpy-Bibliothek besser zu verstehen, anzuwenden und sie in der Praxis flexibel nutzen zu können.
Referenz:
- https://numpy.org/doc/stable/reference/
Das obige ist der detaillierte Inhalt vonNumpy-Funktion: umfassende Analyse und eingehende Anwendung. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

Bei der Verwendung von Pythons Pandas -Bibliothek ist das Kopieren von ganzen Spalten zwischen zwei Datenrahmen mit unterschiedlichen Strukturen ein häufiges Problem. Angenommen, wir haben zwei Daten ...

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Wie hört Uvicorn kontinuierlich auf HTTP -Anfragen an? Uvicorn ist ein leichter Webserver, der auf ASGI basiert. Eine seiner Kernfunktionen ist es, auf HTTP -Anfragen zu hören und weiterzumachen ...

Wie erstellt in Python ein Objekt dynamisch über eine Zeichenfolge und ruft seine Methoden auf? Dies ist eine häufige Programmieranforderung, insbesondere wenn sie konfiguriert oder ausgeführt werden muss ...

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

In dem Artikel werden beliebte Python-Bibliotheken wie Numpy, Pandas, Matplotlib, Scikit-Learn, TensorFlow, Django, Flask und Anfragen erörtert, die ihre Verwendung in wissenschaftlichen Computing, Datenanalyse, Visualisierung, maschinellem Lernen, Webentwicklung und h beschreiben

Regelmäßige Ausdrücke sind leistungsstarke Tools für Musteranpassung und Textmanipulation in der Programmierung, wodurch die Effizienz bei der Textverarbeitung in verschiedenen Anwendungen verbessert wird.
