Inhaltsverzeichnis
Ein eindimensionales Array erstellen
Das Array in Scheiben schneiden Operation
Das Array in Scheiben schneiden und die Schrittgröße ändern
Ausgelassene Parameter verwenden Slicing-Vorgang
Negative Indizierung verwenden Slicing-Operation
arr = np.array([1, 2, 3, 4, 5])
result = arr[1:, 1:]
bool_arr = arr > 2
result = arr[bool_arr]
arr[arr > 2] = 0
Heim Web-Frontend HTML-Tutorial Eingehende Analyse der Numpy-Slicing-Operationen und deren Anwendung im tatsächlichen Kampf

Eingehende Analyse der Numpy-Slicing-Operationen und deren Anwendung im tatsächlichen Kampf

Jan 26, 2024 am 08:52 AM
numpy 切片操作 Praktischer Anwendungsleitfaden

Eingehende Analyse der Numpy-Slicing-Operationen und deren Anwendung im tatsächlichen Kampf

Detaillierte Erläuterung der Numpy-Slicing-Operationsmethode und praktische Anwendungsanleitung

Einführung: Numpy ist eine der beliebtesten wissenschaftlichen Rechenbibliotheken in Python und bietet leistungsstarke Array-Operationsfunktionen. Unter diesen ist der Slicing-Vorgang eine der am häufigsten verwendeten und leistungsstarken Funktionen in Numpy. In diesem Artikel wird die Slicing-Operationsmethode in Numpy ausführlich vorgestellt und die spezifische Verwendung der Slicing-Operation anhand eines praktischen Anwendungsleitfadens demonstriert.

1. Einführung in die Numpy-Slicing-Operationsmethode

Numpys Slicing-Operation bezieht sich auf das Erhalten einer Teilmenge eines Arrays durch Angabe eines Indexintervalls. Seine Grundform ist: array[start:end:step]. Unter diesen repräsentiert start den Startindex (inklusive), end repräsentiert den Endindex (exklusiv) und step repräsentiert die Schrittgröße (Standard ist 1). Gleichzeitig unterstützt Numpy auch die Verwendung weggelassener Parameter und negativer Indizes.

  1. Grundlegende Verwendung des Slicing-Vorgangs
    Werfen wir zunächst einen Blick auf die grundlegende Verwendung des Slicing-Vorgangs von Numpy.

numpy als np importieren

Ein eindimensionales Array erstellen

arr = np.arange(10)
print(arr) # Ausgabe: [0 1 2 3 4 5 6 7 8 9]

Das Array in Scheiben schneiden Operation

result = arr[2:6]
print(result) # Ausgabe: [2 3 4 5]

Das Array in Scheiben schneiden und die Schrittgröße ändern

result = arr[1:9:2]
print ( Ergebnis) # Ausgabe: [1 3 5 7]

  1. Verwendung weggelassener Parameter
    Das Weglassen von Parametern kann den Slicing-Ausdruck vereinfachen. Wenn „start“ weggelassen wird, ist der Standardwert 0; wenn „end“ weggelassen wird, ist der Standardwert die Array-Länge; wenn „step“ weggelassen wird, ist der Standardwert 1.

numpy als np importieren

Ein eindimensionales Array erstellen

arr = np.arange(10)
print(arr) # Ausgabe: [0 1 2 3 4 5 6 7 8 9]

Ausgelassene Parameter verwenden Slicing-Vorgang

result = arr[:5] # Den Startparameter weglassen, der arr[0:5] entspricht
print(result) # Ausgabe: [0 1 2 3 4]

result = arr[5: ] # Endparameter weglassen, entspricht arr[5:10]
print(result) # Ausgabe: [5 6 7 8 9]

result = arr[::2] # Schrittparameter weglassen, entspricht arr[0 :10:2 ]
print(result) # Ausgabe: [0 2 4 6 8]

  1. Verwendung eines negativen Index
    Der negative Index stellt die von hinten nach vorne berechnete Position dar, -1 stellt das letzte Element dar. Durch die negative Indizierung ist es einfach, den Kehrwert eines Arrays zu ermitteln.

numpy als np importieren

Ein eindimensionales Array erstellen

arr = np.arange(10)
print(arr) # Ausgabe: [0 1 2 3 4 5 6 7 8 9]

Negative Indizierung verwenden Slicing-Operation

result = arr[-5:] # bedeutet, die letzten 5 Elemente des Arrays zu nehmen.
print(result) # Ausgabe: [5 6 7 8 9]

result = arr[:-3] # bedeutet, zu nehmen das Array Alle Elemente vor dem drittletzten Element
print(result) # Ausgabe: [0 1 2 3 4 5 6]

2 Praktischer Anwendungsleitfaden für Numpy-Slicing-Operationen in der Datenverarbeitung und im wissenschaftlichen Rechnen ein breites Anwendungsspektrum. Nachfolgend verwenden wir einige konkrete Beispiele, um die Anwendung von Slicing-Operationen zu demonstrieren.

Slicing-Operation für zweidimensionale Arrays
    Für zweidimensionale Arrays können wir Slicing-Operationen verwenden, um Zeilen, Spalten oder Unterarrays auszuwählen.

  1. numpy als np importieren

Erstelle ein zweidimensionales Array

arr = np.array([[1, 2, 3],

            [4, 5, 6],
            [7, 8, 9]])
Nach dem Login kopieren

print(arr)

Wähle die zweite Zeile aus

result = arr [ 1, :]

print(result) # Ausgabe: [4 5 6]


Wählen Sie die zweite Spalte aus

result = arr[:, 1]

print(result) # Ausgabe: [2 5 8]


Select the sub Array

result = arr[1:, 1:]

print(result) # Output: [[5 6]

          #       [8 9]]
Nach dem Login kopieren

Bedingte Slicing-Operation
    Slicing-Operation kann auch in Verbindung mit bedingter Beurteilung verwendet werden, um die zu filtern Array Oder Zuweisung.

  1. numpy als np importieren

Ein eindimensionales Array erstellen

arr = np.array([1, 2, 3, 4, 5])

Elemente größer als 2 im Array zählen

bool_arr = arr > 2

print(bool_arr) # Ausgabe: [False False True True True]


Bedingte Slicing-Operation verwenden, um Elemente größer als 2 auszuwählen

result = arr[bool_arr]

print(result) # Ausgabe: [3 4 5]


Verwenden Sie die bedingte Slicing-Operation, um Elementen größer als 2 einen Wert von 0 zuzuweisen

arr[arr > 2] = 0

print(arr) # Ausgabe: [1 2 0 0 0]


3. Zusammenfassung

Dieser Artikel stellt die grundlegende Verwendung und allgemeine Anwendungsszenarien von Slicing-Operationen in Numpy vor und gibt spezifische Beispielcodes. Slicing-Operationen sind eines der flexiblen und leistungsstarken Tools von Numpy für die Datenverarbeitung und das wissenschaftliche Rechnen ist für die Implementierung komplexer Aufgaben von entscheidender Bedeutung. Durch das Studium dieses Artikels hoffe ich, dass die Leser ein tieferes Verständnis für Slicing-Operationen in Numpy erlangen und diese flexibel in praktischen Anwendungen einsetzen können

Das obige ist der detaillierte Inhalt vonEingehende Analyse der Numpy-Slicing-Operationen und deren Anwendung im tatsächlichen Kampf. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

So aktualisieren Sie die Numpy-Version So aktualisieren Sie die Numpy-Version Nov 28, 2023 pm 05:50 PM

So aktualisieren Sie die Numpy-Version: 1. Verwenden Sie den Befehl „pip install --upgrade numpy“. 2. Wenn Sie die Python 3.x-Version verwenden, verwenden Sie den Befehl „pip3 install --upgrade numpy“, der heruntergeladen wird Installieren Sie es und überschreiben Sie die aktuelle NumPy-Version 3. Wenn Sie Conda zum Verwalten der Python-Umgebung verwenden, verwenden Sie zum Aktualisieren den Befehl „conda install --update numpy“.

So überprüfen Sie schnell die Numpy-Version So überprüfen Sie schnell die Numpy-Version Jan 19, 2024 am 08:23 AM

Numpy ist eine wichtige Mathematikbibliothek in Python. Sie bietet effiziente Array-Operationen und wissenschaftliche Berechnungsfunktionen und wird häufig in den Bereichen Datenanalyse, maschinelles Lernen, Deep Learning und anderen Bereichen verwendet. Bei der Verwendung von Numpy müssen wir häufig die Versionsnummer von Numpy überprüfen, um die von der aktuellen Umgebung unterstützten Funktionen zu ermitteln. In diesem Artikel erfahren Sie, wie Sie die Numpy-Version schnell überprüfen und spezifische Codebeispiele bereitstellen. Methode 1: Verwenden Sie das __version__-Attribut, das mit numpy geliefert wird. Das numpy-Modul wird mit einem __ geliefert.

Welche Numpy-Version wird empfohlen? Welche Numpy-Version wird empfohlen? Nov 22, 2023 pm 04:58 PM

Es wird empfohlen, die neueste Version von NumPy1.21.2 zu verwenden. Der Grund ist: Derzeit ist die neueste stabile Version von NumPy 1.21.2. Im Allgemeinen wird empfohlen, die neueste Version von NumPy zu verwenden, da diese die neuesten Funktionen und Leistungsoptimierungen enthält und einige Probleme und Fehler in früheren Versionen behebt.

Numpy-Version aktualisieren: eine detaillierte und leicht verständliche Anleitung Numpy-Version aktualisieren: eine detaillierte und leicht verständliche Anleitung Feb 25, 2024 pm 11:39 PM

So aktualisieren Sie die Numpy-Version: Leicht verständliches Tutorial, erfordert konkrete Codebeispiele. Einführung: NumPy ist eine wichtige Python-Bibliothek für wissenschaftliche Berechnungen. Es bietet ein leistungsstarkes mehrdimensionales Array-Objekt und eine Reihe verwandter Funktionen, mit denen effiziente numerische Operationen ausgeführt werden können. Mit der Veröffentlichung neuer Versionen stehen uns ständig neuere Funktionen und Fehlerbehebungen zur Verfügung. In diesem Artikel wird beschrieben, wie Sie Ihre installierte NumPy-Bibliothek aktualisieren, um die neuesten Funktionen zu erhalten und bekannte Probleme zu beheben. Schritt 1: Überprüfen Sie zu Beginn die aktuelle NumPy-Version

Schritt-für-Schritt-Anleitung zur Installation von NumPy in PyCharm und zur optimalen Nutzung seiner Funktionen Schritt-für-Schritt-Anleitung zur Installation von NumPy in PyCharm und zur optimalen Nutzung seiner Funktionen Feb 18, 2024 pm 06:38 PM

Bringen Sie Ihnen Schritt für Schritt bei, NumPy in PyCharm zu installieren und seine leistungsstarken Funktionen vollständig zu nutzen. Vorwort: NumPy ist eine der grundlegenden Bibliotheken für wissenschaftliches Rechnen in Python. Sie bietet leistungsstarke mehrdimensionale Array-Objekte und verschiedene für die Ausführung erforderliche Funktionen Grundlegende Operationen an Arrays. Es ist ein wichtiger Bestandteil der meisten Data-Science- und Machine-Learning-Projekte. In diesem Artikel erfahren Sie, wie Sie NumPy in PyCharm installieren und seine leistungsstarken Funktionen anhand spezifischer Codebeispiele demonstrieren. Schritt 1: Installieren Sie zunächst PyCharm

So erhöhen Sie die Dimension von Numpy So erhöhen Sie die Dimension von Numpy Nov 22, 2023 am 11:48 AM

So fügen Sie Dimensionen in Numpy hinzu: 1. Verwenden Sie „np.newaxis“, um Dimensionen hinzuzufügen. „np.newaxis“ ist ein spezieller Indexwert, der zum Einfügen einer neuen Dimension an einer bestimmten Position verwendet wird . So erhöhen Sie die Dimension: 2. Verwenden Sie „np.expand_dims()“, um die Dimension zu vergrößern. Die Funktion „np.expand_dims()“ kann eine neue Dimension an der angegebenen Position einfügen.

So installieren Sie Numpy So installieren Sie Numpy Dec 01, 2023 pm 02:16 PM

Numpy kann mit Pip, Conda, Quellcode und Anaconda installiert werden. Detaillierte Einführung: 1. pip, geben Sie pip install numpy in die Befehlszeile ein; 2. conda, geben Sie conda install numpy in die Befehlszeile ein. 3. Quellcode, entpacken Sie das Quellcodepaket oder geben Sie das Quellcodeverzeichnis ein, geben Sie den Befehl ein Zeile python setup.py build python setup.py install.

Entdecken Sie die geheime Methode zur schnellen Deinstallation der NumPy-Bibliothek Entdecken Sie die geheime Methode zur schnellen Deinstallation der NumPy-Bibliothek Jan 26, 2024 am 08:32 AM

Das Geheimnis der schnellen Deinstallation der NumPy-Bibliothek wird gelüftet. Es sind spezifische Codebeispiele erforderlich. NumPy ist eine leistungsstarke Python-Bibliothek für wissenschaftliches Rechnen, die in Bereichen wie Datenanalyse, wissenschaftlichem Rechnen und maschinellem Lernen weit verbreitet ist. Manchmal müssen wir jedoch möglicherweise die NumPy-Bibliothek deinstallieren, sei es zur Aktualisierung der Version oder aus anderen Gründen. In diesem Artikel werden einige Methoden zum schnellen Deinstallieren der NumPy-Bibliothek vorgestellt und spezifische Codebeispiele bereitgestellt. Methode 1: Verwenden Sie pip zum Deinstallieren. Pip ist ein Python-Paketverwaltungstool, das zum Installieren, Aktualisieren und Installieren verwendet werden kann

See all articles