


Entdecken Sie häufig verwendete Numpy-Funktionen in Python: Numpy-Funktionen verstehen
Numpy-Funktionen verstehen: Erkunden Sie häufig verwendete Numpy-Funktionen in Python. Spezifische Codebeispiele sind erforderlich.
Einführung:
In Python ist NumPy (kurz für Numerical Python) eine leistungsstarke Bibliothek für wissenschaftliches Rechnen, die Python mit effizienter Mehrdimensionalität versorgt Array-Objekte und eine große Bibliothek mathematischer Funktionen. NumPy ist eine der Kernbibliotheken für wissenschaftliches Rechnen mit Python und wird häufig in der Datenanalyse, dem maschinellen Lernen, der Bildverarbeitung und anderen Bereichen verwendet. In diesem Artikel werden einige häufig verwendete NumPy-Funktionen vorgestellt und spezifische Codebeispiele bereitgestellt.
1. Funktionen zum Erstellen von Arrays
(1) Erstellen Sie eindimensionale Arrays
Durch die Verwendung von Numpys Arange-, Linspace-, Logspace- und anderen Funktionen können wir eindimensionale Arrays erstellen.
Codebeispiel:
numpy als np importieren
Verwenden Sie die Arange-Funktion, um ein eindimensionales Array zu erstellen
arr1 = np.arange(10)
print("Eindimensionales Array, erstellt durch die Arange-Funktion: ", arr1)
Linspace verwenden. Die Funktion erstellt ein eindimensionales Array.
arr2 = np.linspace(0, 1, 10) # Erzeugt 10 gleichabständige Zahlen von 0 bis 1 Funktion: ", arr2)
print( „Eindimensionales Array, erstellt durch die Logspace-Funktion Array:“, arr3)
Zusätzlich zu eindimensionalen Arrays können wir auch mehrdimensionale Arrays erstellen, indem wir die Array-Funktion von Numpy verwenden.
[4, 5, 6]])
", arr4)
[4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
", arr5)
Mathematische Funktionen in NumPy können Elemente in Arrays bearbeitet werden, z. B. logarithmische Funktionen, trigonometrische Funktionen, Exponentialfunktionen usw , 4])
print("Exponentialfunktion des Arrays:", np.exp(arr6))(2) Statistische Funktionen
Durch Verwendung Mit den statistischen Funktionen von NumPy können wir statistische Analysen für Arrays wie Summe, Durchschnitt und Maximum, Minimalwert usw. durchführen , 3, 4, 5])
Finden Sie die Summe des Arrays
print("Die Summe des Arrays ::", np.sum(arr7))
Finden Sie den Mittelwert des Arrays
Logische Funktion für Array Führt logische Operationen an den Elementen durch, z. B. die Beurteilung, ob die Elemente vorhanden sind eine bestimmte Bedingung erfüllen.
numpy als np importieren
arr8 = np.array([1, 2, 3, 4, 5])
Beurteilung, ob die Elemente im Array größer als 2 sind
print("ob die Elemente im Array größer als 2 sind:", np.greater(arr8, 2))
Bestimmen Sie, ob die Elemente im Array kleiner oder gleich 3 sind
print("ob die Elemente im Array sind kleiner oder gleich 3: ", np.less_equal(arr8, 3))
Sie können die Form des Arrays ändern, indem Sie die Umformungsfunktion verwenden, z. B. indem Sie ein eindimensionales Array in ein zweidimensionales Array oder ein mehrdimensionales Array in eins umwandeln -dimensionales Array.
Codebeispiel:
import numpy as np
arr9 = np.arange(9)
Konvertieren Sie ein eindimensionales Array in ein zweidimensionales Array mit drei Zeilen und drei Spalten
arr10 = np.reshape(arr9 , (3, 3))
print("Konvertieren Sie ein eindimensionales Array in ein zweidimensionales Array:", arr10)
Konvertieren Sie ein mehrdimensionales Array in ein eindimensionales Array
print("Konvertieren Sie ein mehrdimensionales Array in ein eindimensionales Array. Für ein eindimensionales Array: ", arr11)
(2) Arrays spleißen
NumPy bietet Funktionen wie vstack, hstack und concatenate zum Spleißen Arrays. Codebeispiel: import numpy as np
arr12 = np.array([[1, 2, 3],
[4, 5, 6]])
[10, 11, 12]])
Nach dem Login kopierenvertical Gespleißtes Array
[10, 11, 12]])
arr14 = np.vstack((arr12, arr13))
", arr14)
print ("Horizontales Spleißarray:
", arr15)Zusammenfassung:Durch die Einleitung dieses Artikels haben wir einige häufig verwendete Funktionen in NumPy kennengelernt, darunter Funktionen zum Erstellen von Arrays, Array-Operationsfunktionen, und Array-Formfunktionen können uns dabei helfen, Array-Operationen und mathematische Berechnungen bequemer durchzuführen und die Programmiereffizienz zu verbessern in der Lage, sie flexibel auf die tatsächliche Datenverarbeitung und wissenschaftliche Berechnungen anzuwenden
Das obige ist der detaillierte Inhalt vonEntdecken Sie häufig verwendete Numpy-Funktionen in Python: Numpy-Funktionen verstehen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Numpy-Funktionen umfassen np.sin(), np.cos(), np.tan(), np.exp(), np.log(), np.log10(), np.log2(), np.mean() , np.median(), np.var(), np.std(), np.max(), np.min(), np.percentile() usw.

Zu den Numpy-Funktionen gehören np.array(), np.zeros(), np.ones(), np.empty(), np.arange(), np.linspace(), np.shape(), np.reshape() , np.resize(), np.concatenate(), np.split(), np.add(), np.subtract(), np.multiply() usw.

Schritte zum Finden der Umkehrung einer Matrix in Numpy: 1. Importieren Sie die Numpy-Bibliothek, importieren Sie Numpy als np. 2. Erstellen Sie eine quadratische Matrix, A = np.array([[1, 2], [3, 4]]) ; 3. Verwenden Sie die Funktion np.linalg.inv(), um die Umkehrung der Matrix zu finden, A_inv = np.linalg.inv(A); 4. Geben Sie das Ergebnis aus, print(A_inv);

Numpy ist eine Python-Bibliothek für numerische Berechnungen und Datenanalysen, die viele leistungsstarke Funktionen und Tools bereitstellt. Einführung in gängige Numpy-Funktionen: 1. np.array(), erstellt ein Array aus einer Liste oder einem Tupel; 2. np.zeros(), erstellt ein Array aus allen Nullen; 3. np.ones(), erstellt ein Array An Array aller Einsen; 4. np.arange(), erstellt ein arithmetisches Sequenzarray 5. np.shape(), gibt die Form des Arrays zurück usw.

Numpy-Funktionen verstehen: Erkunden Sie häufig verwendete Numpy-Funktionen in Python. Es sind spezifische Codebeispiele erforderlich. Einführung: In Python ist NumPy (kurz für NumericalPython) eine leistungsstarke wissenschaftliche Computerbibliothek, die Python mit effizienten mehrdimensionalen Array-Objekten und einer großen Anzahl von bietet Bibliothek für mathematische Funktionen. NumPy ist eine der Kernbibliotheken für wissenschaftliches Rechnen mit Python und wird häufig in der Datenanalyse, dem maschinellen Lernen, der Bildverarbeitung und anderen Bereichen verwendet. In diesem Artikel werden einige häufig verwendete N vorgestellt

PyCharm-Tutorial: Installieren Sie NumPy schnell und beginnen Sie Ihre Programmierreise. Einführung: PyCharm ist eine leistungsstarke integrierte Python-Entwicklungsumgebung und NumPy ist eine Python-Bibliothek für wissenschaftliches Rechnen. NumPy bietet eine große Anzahl mathematischer Funktionen und Array-Operationen, wodurch Python für wissenschaftliche Berechnungen und Datenanalysen praktischer wird. Dieses Tutorial führt Sie schnell durch die Installation von NumPy in PyCharm und zeigt Ihnen anhand konkreter Codebeispiele, wie Sie mit dem Schreiben von NumPy-Programmen beginnen.

Eingehende Untersuchung der Numpy-Funktionen: Analyse der Kernfunktionen der Numpy-Bibliothek und ihrer Anwendungen. Einführung: NumPy (NumericalPython) ist eine der Basisbibliotheken für das wissenschaftliche Rechnen in Python. Sie bietet effiziente mehrdimensionale Array-Objekte (ndarray). Reihe mathematischer Funktionen, die es uns ermöglichen, schnelle und präzise numerische Berechnungen in Python durchzuführen. Dieser Artikel befasst sich mit den Kernfunktionen und -anwendungen der NumPy-Bibliothek und hilft den Lesern anhand spezifischer Codebeispiele, NumP besser zu verstehen und anzuwenden.

Schlüssel zur Beherrschung der NumPy-Funktionen: Ein umfassender Leitfaden Einführung: Im Bereich des wissenschaftlichen Rechnens ist NumPy eine der wichtigsten Bibliotheken in Python. Es bietet effiziente mehrdimensionale Array-Objekte und viele Funktionen für die Arbeit mit diesen Arrays. Dieser Artikel bietet den Lesern eine umfassende Anleitung, die ihnen hilft, die Schlüssel zu NumPy-Funktionen zu beherrschen. Der Artikel beginnt mit den Grundlagen von NumPy und stellt spezifische Codebeispiele bereit, um den Lesern zu helfen, diese Funktionen besser zu verstehen und anzuwenden. 1. Grundkenntnisse von NumPy NumPy ist eine Software für wissenschaftliche Zwecke
