Inhaltsverzeichnis
1. Erstellung und Transformation von Arrays
2. Array-Operationen und Operationen
3. Statistische Funktionen und lineare Algebra-Funktionen
4. Hilfsfunktionen und allgemeine Funktionen
Heim Backend-Entwicklung Python-Tutorial Vollständige Liste der Numpy-Funktionen und ihrer Verwendung: Detaillierte Erklärung aller Funktionen in der Numpy-Bibliothek

Vollständige Liste der Numpy-Funktionen und ihrer Verwendung: Detaillierte Erklärung aller Funktionen in der Numpy-Bibliothek

Jan 26, 2024 am 11:02 AM

Vollständige Liste der Numpy-Funktionen und ihrer Verwendung: Detaillierte Erklärung aller Funktionen in der Numpy-Bibliothek

Numpy-Funktionsenzyklopädie: Detaillierte Erläuterung aller Funktionen und ihrer Verwendung in der Numpy-Bibliothek, spezifische Codebeispiele sind erforderlich

Einführung:
In den Bereichen Datenanalyse und wissenschaftliches Rechnen müssen häufig umfangreiche numerische Daten erfasst werden verarbeitet. Numpy ist die am häufigsten verwendete Open-Source-Bibliothek in Python und bietet effiziente mehrdimensionale Array-Objekte und eine Reihe von Funktionen zum Betreiben von Arrays. In diesem Artikel werden alle Funktionen und ihre Verwendung in der Numpy-Bibliothek detailliert vorgestellt und spezifische Codebeispiele gegeben, um den Lesern zu helfen, die Numpy-Bibliothek besser zu verstehen und zu verwenden.

1. Erstellung und Transformation von Arrays

  1. np.array(): Erstellen Sie ein Array und konvertieren Sie die Eingabedaten in ein ndarray-Objekt.
import numpy as np

arr = np.array([1, 2, 3, 4, 5])
print(arr)
Nach dem Login kopieren

Das Ausgabeergebnis ist:

[1 2 3 4 5]
Nach dem Login kopieren
Nach dem Login kopieren
  1. np.arange(): Erstellt ein arithmetisches Array.
import numpy as np

arr = np.arange(0, 10, 2)
print(arr)
Nach dem Login kopieren

Das Ausgabeergebnis ist:

[0 2 4 6 8]
Nach dem Login kopieren
  1. np.zeros(): Erstellt ein Array, bei dem alle Elemente 0 sind.
import numpy as np

arr = np.zeros((2, 3))
print(arr)
Nach dem Login kopieren

Das Ausgabeergebnis ist:

[[0. 0. 0.]
 [0. 0. 0.]]
Nach dem Login kopieren
  1. np.ones(): Erstellt ein Array, bei dem alle Elemente 1 sind.
import numpy as np

arr = np.ones((2, 3))
print(arr)
Nach dem Login kopieren

Das Ausgabeergebnis ist:

[[1. 1. 1.]
 [1. 1. 1.]]
Nach dem Login kopieren
  1. np.linspace(): Erstellt ein Array mit gleichen Abständen.
import numpy as np

arr = np.linspace(0,1,5)
print(arr)
Nach dem Login kopieren

Das Ausgabeergebnis ist:

[0.   0.25 0.5  0.75 1.  ]
Nach dem Login kopieren
  1. np.eye(): Erstellen Sie eine Matrix mit einer Diagonale von 1.
import numpy as np

arr = np.eye(3)
print(arr)
Nach dem Login kopieren

Das Ausgabeergebnis ist:

[[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]]
Nach dem Login kopieren

2. Array-Operationen und Operationen

  1. Array-Formoperationen
  • np.reshape(): Ändern Sie die Form des Arrays.
import numpy as np

arr = np.arange(1, 10)
arr_reshape = np.reshape(arr, (3, 3))
print(arr_reshape)
Nach dem Login kopieren

Das Ausgabeergebnis ist:

[[1 2 3]
 [4 5 6]
 [7 8 9]]
Nach dem Login kopieren
  • arr.flatten(): Konvertiert ein mehrdimensionales Array in ein eindimensionales Array.
import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6]])
arr_flatten = arr.flatten()
print(arr_flatten)
Nach dem Login kopieren

Das Ausgabeergebnis ist:

[1 2 3 4 5 6]
Nach dem Login kopieren
  1. Elementoperation des Arrays
  • np.sort(): Sortiert die Elemente des Arrays.
import numpy as np

arr = np.array([3, 1, 5, 2, 4])
arr_sorted = np.sort(arr)
print(arr_sorted)
Nach dem Login kopieren

Das Ausgabeergebnis ist:

[1 2 3 4 5]
Nach dem Login kopieren
Nach dem Login kopieren
  • np.argmax(): Gibt den Index des größten Elements im Array zurück.
import numpy as np

arr = np.array([3, 1, 5, 2, 4])
max_index = np.argmax(arr)
print(max_index)
Nach dem Login kopieren

Das Ausgabeergebnis ist:

2
Nach dem Login kopieren
  1. Array-Operationen
  • np.add(): Zwei Arrays hinzufügen.
import numpy as np

arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])
result = np.add(arr1, arr2)
print(result)
Nach dem Login kopieren

Das Ausgabeergebnis ist:

[5 7 9]
Nach dem Login kopieren
  • np.dot(): Punktmultiplikation zweier Arrays.
import numpy as np

arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])
result = np.dot(arr1, arr2)
print(result)
Nach dem Login kopieren

Das Ausgabeergebnis ist:

32
Nach dem Login kopieren

3. Statistische Funktionen und lineare Algebra-Funktionen

  1. Statistische Funktionen
  • np.mean(): Berechnen Sie den Mittelwert des Arrays.
import numpy as np

arr = np.array([1, 2, 3, 4, 5])
mean = np.mean(arr)
print(mean)
Nach dem Login kopieren

Das Ausgabeergebnis ist:

3.0
Nach dem Login kopieren
  • np.std(): Berechnen Sie die Standardabweichung des Arrays.
import numpy as np

arr = np.array([1, 2, 3, 4, 5])
std = np.std(arr)
print(std)
Nach dem Login kopieren

Das Ausgabeergebnis ist:

1.4142135623730951
Nach dem Login kopieren
  1. Lineare Algebra-Funktion
  • np.linalg.det(): Berechnen Sie die Determinante der Matrix.
import numpy as np

matrix = np.array([[1, 2], [3, 4]])
det = np.linalg.det(matrix)
print(det)
Nach dem Login kopieren

Das Ausgabeergebnis ist:

-2.0000000000000004
Nach dem Login kopieren
  • np.linalg.inv(): Berechnen Sie die inverse Matrix der Matrix.
import numpy as np

matrix = np.array([[1, 2], [3, 4]])
inv = np.linalg.inv(matrix)
print(inv)
Nach dem Login kopieren

Das Ausgabeergebnis ist:

[[-2.   1. ]
 [ 1.5 -0.5]]
Nach dem Login kopieren

4. Hilfsfunktionen und allgemeine Funktionen

  1. Hilfsfunktionen
  • np.loadtxt(): Daten aus einer Textdatei laden.
import numpy as np

arr = np.loadtxt('data.txt')
print(arr)
Nach dem Login kopieren
  • np.savetxt(): Daten in einer Textdatei speichern.
import numpy as np

arr = np.array([1, 2, 3, 4, 5])
np.savetxt('data.txt', arr)
Nach dem Login kopieren
  1. Universelle Funktion
  • np.sin(): Berechnen Sie den Sinuswert der Elemente im Array.
import numpy as np

arr = np.array([0, np.pi / 2, np.pi])
sin_val = np.sin(arr)
print(sin_val)
Nach dem Login kopieren

Das Ausgabeergebnis ist:

[0.         1.         1.2246468e-16]
Nach dem Login kopieren
  • np.exp(): Berechnet den Exponentenwert der Elemente im Array.
import numpy as np

arr = np.array([1, 2, 3])
exp_val = np.exp(arr)
print(exp_val)
Nach dem Login kopieren

Das Ausgabeergebnis ist:

[ 2.71828183  7.3890561  20.08553692]
Nach dem Login kopieren

Dieser Artikel zeigt nur einen kleinen Teil der Funktionen in der Numpy-Bibliothek, die über leistungsfähigere Funktionen verfügt. Ich hoffe, dass die Leser die Funktionen der Numpy-Bibliothek in der tatsächlichen Programmierung flexibel nutzen können, um die Effizienz und Genauigkeit der Datenverarbeitung zu verbessern.

Das obige ist der detaillierte Inhalt vonVollständige Liste der Numpy-Funktionen und ihrer Verwendung: Detaillierte Erklärung aller Funktionen in der Numpy-Bibliothek. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Wie löste ich das Problem der Berechtigungen beim Betrachten der Python -Version in Linux Terminal? Wie löste ich das Problem der Berechtigungen beim Betrachten der Python -Version in Linux Terminal? Apr 01, 2025 pm 05:09 PM

Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer-Anfänger-Programmierbasis in Projekt- und problemorientierten Methoden? Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer-Anfänger-Programmierbasis in Projekt- und problemorientierten Methoden? Apr 02, 2025 am 07:18 AM

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Wie kann ich die gesamte Spalte eines Datenrahmens effizient in einen anderen Datenrahmen mit verschiedenen Strukturen in Python kopieren? Wie kann ich die gesamte Spalte eines Datenrahmens effizient in einen anderen Datenrahmen mit verschiedenen Strukturen in Python kopieren? Apr 01, 2025 pm 11:15 PM

Bei der Verwendung von Pythons Pandas -Bibliothek ist das Kopieren von ganzen Spalten zwischen zwei Datenrahmen mit unterschiedlichen Strukturen ein häufiges Problem. Angenommen, wir haben zwei Daten ...

Wie kann man vom Browser vermeiden, wenn man überall Fiddler für das Lesen des Menschen in der Mitte verwendet? Wie kann man vom Browser vermeiden, wenn man überall Fiddler für das Lesen des Menschen in der Mitte verwendet? Apr 02, 2025 am 07:15 AM

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

Was sind reguläre Ausdrücke? Was sind reguläre Ausdrücke? Mar 20, 2025 pm 06:25 PM

Regelmäßige Ausdrücke sind leistungsstarke Tools für Musteranpassung und Textmanipulation in der Programmierung, wodurch die Effizienz bei der Textverarbeitung in verschiedenen Anwendungen verbessert wird.

Wie hört Uvicorn kontinuierlich auf HTTP -Anfragen ohne Serving_forver () an? Wie hört Uvicorn kontinuierlich auf HTTP -Anfragen ohne Serving_forver () an? Apr 01, 2025 pm 10:51 PM

Wie hört Uvicorn kontinuierlich auf HTTP -Anfragen an? Uvicorn ist ein leichter Webserver, der auf ASGI basiert. Eine seiner Kernfunktionen ist es, auf HTTP -Anfragen zu hören und weiterzumachen ...

Was sind einige beliebte Python -Bibliotheken und ihre Verwendung? Was sind einige beliebte Python -Bibliotheken und ihre Verwendung? Mar 21, 2025 pm 06:46 PM

In dem Artikel werden beliebte Python-Bibliotheken wie Numpy, Pandas, Matplotlib, Scikit-Learn, TensorFlow, Django, Flask und Anfragen erörtert, die ihre Verwendung in wissenschaftlichen Computing, Datenanalyse, Visualisierung, maschinellem Lernen, Webentwicklung und h beschreiben

Wie erstelle ich dynamisch ein Objekt über eine Zeichenfolge und rufe seine Methoden in Python auf? Wie erstelle ich dynamisch ein Objekt über eine Zeichenfolge und rufe seine Methoden in Python auf? Apr 01, 2025 pm 11:18 PM

Wie erstellt in Python ein Objekt dynamisch über eine Zeichenfolge und ruft seine Methoden auf? Dies ist eine häufige Programmieranforderung, insbesondere wenn sie konfiguriert oder ausgeführt werden muss ...

See all articles