


Beschleunigen Sie Ihre Anwendungen: Eine einfache Anleitung zum Guava-Caching
Beschleunigen Sie Ihre Anwendungen: Eine einfache Anleitung zum Guava-Caching
Guava缓存是一个高性能的内存缓存库,它可以显著提高应用程序的性能。它提供了多种缓存策略,包括LRU(最近最少使用)、LFU(最近最不经常使用)和TTL(生存时间)。
1. 安装Guava缓存
在你的项目中添加Guava缓存库的依赖。
<dependency> <groupId>com.google.guava</groupId> <artifactId>guava</artifactId> <version>31.1-jre</version> </dependency>
2. 创建缓存
import com.google.common.cache.CacheBuilder; import com.google.common.cache.CacheLoader; import com.google.common.cache.LoadingCache; public class GuavaCacheExample { public static void main(String[] args) { // 创建一个LRU缓存,最大容量为100 LoadingCache<String, String> cache = CacheBuilder.newBuilder() .maximumSize(100) .build(new CacheLoader<String, String>() { @Override public String load(String key) throws Exception { // 从数据库或其他数据源中加载数据 return "value-" + key; } }); // 将数据放入缓存中 cache.put("key1", "value1"); cache.put("key2", "value2"); // 从缓存中获取数据 String value1 = cache.getIfPresent("key1"); String value2 = cache.getIfPresent("key2"); // 输出结果 System.out.println(value1); // value1 System.out.println(value2); // value2 } }
3. 使用缓存
一旦你创建了缓存,你就可以使用它来存储和检索数据。你可以使用put()
方法将数据放入缓存中,使用get()
方法从缓存中获取数据。
// 将数据放入缓存中 cache.put("key3", "value3"); // 从缓存中获取数据 String value3 = cache.getIfPresent("key3"); // 输出结果 System.out.println(value3); // value3
4. 缓存策略
Guava缓存提供了多种缓存策略,包括LRU(最近最少使用)、LFU(最近最不经常使用)和TTL(生存时间)。你可以根据你的具体需求选择合适的缓存策略。
// 创建一个LRU缓存,最大容量为100 LoadingCache<String, String> lruCache = CacheBuilder.newBuilder() .maximumSize(100) .build(new CacheLoader<String, String>() { @Override public String load(String key) throws Exception { // 从数据库或其他数据源中加载数据 return "value-" + key; } }); // 创建一个LFU缓存,最大容量为100 LoadingCache<String, String> lfuCache = CacheBuilder.newBuilder() .maximumSize(100) .weigher(Weighers.singleton()) .build(new CacheLoader<String, String>() { @Override public String load(String key) throws Exception { // 从数据库或其他数据源中加载数据 return "value-" + key; } }); // 创建一个TTL缓存,生存时间为10秒 LoadingCache<String, String> ttlCache = CacheBuilder.newBuilder() .expireAfterWrite(10, TimeUnit.SECONDS) .build(new CacheLoader<String, String>() { @Override public String load(String key) throws Exception { // 从数据库或其他数据源中加载数据 return "value-" + key; } });
5. 缓存统计信息
Guava缓存提供了丰富的统计信息,你可以使用这些统计信息来了解缓存的使用情况。
// 获取缓存的命中率 double hitRate = cache.stats().hitRate(); // 获取缓存的未命中率 double missRate = cache.stats().missRate(); // 获取缓存的平均加载时间 long averageLoadTime = cache.stats().averageLoadPenalty(); // 获取缓存的大小 long size = cache.size();
6. 结论
Guava缓存是一个高性能的内存缓存库,它可以显著提高应用程序的性能。它提供了多种缓存策略,包括LRU(最近最少使用)、LFU(最近最不经常使用)和TTL(生存时间)。你可以根据你的具体需求选择合适的缓存策略。
Das obige ist der detaillierte Inhalt vonBeschleunigen Sie Ihre Anwendungen: Eine einfache Anleitung zum Guava-Caching. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Diffusion kann nicht nur besser imitieren, sondern auch „erschaffen“. Das Diffusionsmodell (DiffusionModel) ist ein Bilderzeugungsmodell. Im Vergleich zu bekannten Algorithmen wie GAN und VAE im Bereich der KI verfolgt das Diffusionsmodell einen anderen Ansatz. Seine Hauptidee besteht darin, dem Bild zunächst Rauschen hinzuzufügen und es dann schrittweise zu entrauschen. Das Entrauschen und Wiederherstellen des Originalbilds ist der Kernbestandteil des Algorithmus. Der endgültige Algorithmus ist in der Lage, aus einem zufälligen verrauschten Bild ein Bild zu erzeugen. In den letzten Jahren hat das phänomenale Wachstum der generativen KI viele spannende Anwendungen in der Text-zu-Bild-Generierung, Videogenerierung und mehr ermöglicht. Das Grundprinzip dieser generativen Werkzeuge ist das Konzept der Diffusion, ein spezieller Sampling-Mechanismus, der die Einschränkungen bisheriger Methoden überwindet.

Kimi: In nur einem Satz, in nur zehn Sekunden ist ein PPT fertig. PPT ist so nervig! Um ein Meeting abzuhalten, benötigen Sie einen PPT; um einen wöchentlichen Bericht zu schreiben, müssen Sie einen PPT vorlegen, auch wenn Sie jemanden des Betrugs beschuldigen PPT. Das College ähnelt eher dem Studium eines PPT-Hauptfachs. Man schaut sich PPT im Unterricht an und macht PPT nach dem Unterricht. Als Dennis Austin vor 37 Jahren PPT erfand, hatte er vielleicht nicht damit gerechnet, dass PPT eines Tages so weit verbreitet sein würde. Wenn wir über unsere harte Erfahrung bei der Erstellung von PPT sprechen, treiben uns Tränen in die Augen. „Es dauerte drei Monate, ein PPT mit mehr als 20 Seiten zu erstellen, und ich habe es Dutzende Male überarbeitet. Als ich das PPT sah, musste ich mich übergeben.“ war PPT.“ Wenn Sie ein spontanes Meeting haben, sollten Sie es tun

Am frühen Morgen des 20. Juni (Pekinger Zeit) gab CVPR2024, die wichtigste internationale Computer-Vision-Konferenz in Seattle, offiziell die besten Beiträge und andere Auszeichnungen bekannt. In diesem Jahr wurden insgesamt 10 Arbeiten ausgezeichnet, darunter zwei beste Arbeiten und zwei beste studentische Arbeiten. Darüber hinaus gab es zwei Nominierungen für die beste Arbeit und vier Nominierungen für die beste studentische Arbeit. Die Top-Konferenz im Bereich Computer Vision (CV) ist die CVPR, die jedes Jahr zahlreiche Forschungseinrichtungen und Universitäten anzieht. Laut Statistik wurden in diesem Jahr insgesamt 11.532 Arbeiten eingereicht, von denen 2.719 angenommen wurden, was einer Annahmequote von 23,6 % entspricht. Laut der statistischen Analyse der CVPR2024-Daten des Georgia Institute of Technology befassen sich die meisten Arbeiten aus Sicht der Forschungsthemen mit der Bild- und Videosynthese und -generierung (Imageandvideosyn

DNS (DomainNameSystem) ist ein System, das im Internet verwendet wird, um Domänennamen in entsprechende IP-Adressen umzuwandeln. In Linux-Systemen ist DNS-Caching ein Mechanismus, der die Zuordnungsbeziehung zwischen Domänennamen und IP-Adressen lokal speichert, was die Geschwindigkeit der Domänennamenauflösung erhöhen und die Belastung des DNS-Servers verringern kann. DNS-Caching ermöglicht es dem System, die IP-Adresse schnell abzurufen, wenn es anschließend auf denselben Domänennamen zugreift, ohne jedes Mal eine Abfrageanforderung an den DNS-Server senden zu müssen, wodurch die Netzwerkleistung und -effizienz verbessert wird. In diesem Artikel erfahren Sie, wie Sie den DNS-Cache unter Linux anzeigen und aktualisieren, sowie zugehörige Details und Beispielcode. Bedeutung des DNS-Cachings In Linux-Systemen spielt das DNS-Caching eine Schlüsselrolle. seine Existenz

Wir wissen, dass LLM auf großen Computerclustern unter Verwendung umfangreicher Daten trainiert wird. Auf dieser Website wurden viele Methoden und Technologien vorgestellt, die den LLM-Trainingsprozess unterstützen und verbessern. Was wir heute teilen möchten, ist ein Artikel, der tief in die zugrunde liegende Technologie eintaucht und vorstellt, wie man einen Haufen „Bare-Metals“ ohne Betriebssystem in einen Computercluster für das LLM-Training verwandelt. Dieser Artikel stammt von Imbue, einem KI-Startup, das allgemeine Intelligenz durch das Verständnis der Denkweise von Maschinen erreichen möchte. Natürlich ist es kein einfacher Prozess, einen Haufen „Bare Metal“ ohne Betriebssystem in einen Computercluster für das Training von LLM zu verwandeln, aber Imbue hat schließlich erfolgreich ein LLM mit 70 Milliarden Parametern trainiert der Prozess akkumuliert

Titel: Ein Muss für technische Anfänger: Schwierigkeitsanalyse der C-Sprache und Python, die spezifische Codebeispiele erfordert. Im heutigen digitalen Zeitalter ist Programmiertechnologie zu einer immer wichtigeren Fähigkeit geworden. Ob Sie in Bereichen wie Softwareentwicklung, Datenanalyse, künstliche Intelligenz arbeiten oder einfach nur aus Interesse Programmieren lernen möchten, die Wahl einer geeigneten Programmiersprache ist der erste Schritt. Unter vielen Programmiersprachen sind C-Sprache und Python zwei weit verbreitete Programmiersprachen, jede mit ihren eigenen Merkmalen. In diesem Artikel werden die Schwierigkeitsgrade der C-Sprache und von Python analysiert

Herausgeber des Machine Power Report: Yang Wen Die Welle der künstlichen Intelligenz, repräsentiert durch große Modelle und AIGC, hat unsere Lebens- und Arbeitsweise still und leise verändert, aber die meisten Menschen wissen immer noch nicht, wie sie sie nutzen sollen. Aus diesem Grund haben wir die Kolumne „KI im Einsatz“ ins Leben gerufen, um detailliert vorzustellen, wie KI durch intuitive, interessante und prägnante Anwendungsfälle für künstliche Intelligenz genutzt werden kann, und um das Denken aller anzuregen. Wir heißen Leser auch willkommen, innovative, praktische Anwendungsfälle einzureichen. Videolink: https://mp.weixin.qq.com/s/2hX_i7li3RqdE4u016yGhQ Vor kurzem wurde der Lebens-Vlog eines allein lebenden Mädchens auf Xiaohongshu populär. Eine Animation im Illustrationsstil, gepaart mit ein paar heilenden Worten, kann in nur wenigen Tagen leicht erlernt werden.

Retrieval-Augmented Generation (RAG) ist eine Technik, die Retrieval nutzt, um Sprachmodelle zu verbessern. Bevor ein Sprachmodell eine Antwort generiert, ruft es insbesondere relevante Informationen aus einer umfangreichen Dokumentendatenbank ab und verwendet diese Informationen dann zur Steuerung des Generierungsprozesses. Diese Technologie kann die Genauigkeit und Relevanz von Inhalten erheblich verbessern, das Problem der Halluzinationen wirksam lindern, die Geschwindigkeit der Wissensaktualisierung erhöhen und die Nachverfolgbarkeit der Inhaltsgenerierung verbessern. RAG ist zweifellos einer der spannendsten Bereiche der Forschung im Bereich der künstlichen Intelligenz. Weitere Informationen zu RAG finden Sie im Kolumnenartikel auf dieser Website „Was sind die neuen Entwicklungen bei RAG, das sich darauf spezialisiert hat, die Mängel großer Modelle auszugleichen?“ Diese Rezension erklärt es deutlich. Aber RAG ist nicht perfekt und Benutzer stoßen bei der Verwendung oft auf einige „Problempunkte“. Kürzlich die fortschrittliche generative KI-Lösung von NVIDIA
