


Schöne Suppe, analysiert die Liste vieler Einträge und speichert sie im Datenrahmen
Feb 10, 2024 am 08:48 AMDerzeit werde ich Daten von Diözesen auf der ganzen Welt sammeln.
Meine Methode funktioniert mit BS4 und Pandas. Ich arbeite derzeit an der Scraping-Logik.
import requests from bs4 import BeautifulSoup import pandas as pd url = "http://www.catholic-hierarchy.org/" # Send a GET request to the website response = requests.get(url) #my approach to parse the HTML content of the page soup = BeautifulSoup(response.text, 'html.parser') # Find the relevant elements containing diocese information diocese_elements = soup.find_all("div", class_="diocesan") # Initialize empty lists to store data dioceses = [] addresses = [] # Extract now data from each diocese element for diocese_element in diocese_elements: # Example: Extracting diocese name diocese_name = diocese_element.find("a").text.strip() dioceses.append(diocese_name) # Example: Extracting address address = diocese_element.find("div", class_="address").text.strip() addresses.append(address) # to save the whole data we create a DataFrame using pandas data = {'Diocese': dioceses, 'Address': addresses} df = pd.DataFrame(data) # Display the DataFrame print(df)
Aktuell habe ich etwas Seltsames auf meinem Pycharm entdeckt. Ich versuche einen Weg zu finden, alle Daten mithilfe der Pandas-Methoden zu sammeln.
Richtige Antwort
Dieses Beispiel wird Ihnen den Einstieg erleichtern – es analysiert alle Gemeindeseiten, um den Gemeindenamen + die URL zu erhalten und sie in einem Datenrahmen in Panda zu speichern.
Sie können diese URLs dann durchlaufen und weitere Informationen erhalten, die Sie benötigen.
import pandas as pd import requests from bs4 import beautifulsoup chars = "abcdefghijklmnopqrstuvwxyz" url = "http://www.catholic-hierarchy.org/diocese/la{char}.html" all_data = [] for char in chars: u = url.format(char=char) while true: print(f"parsing {u}") soup = beautifulsoup(requests.get(u).content, "html.parser") for a in soup.select("li a[href^=d]"): all_data.append( { "name": a.text, "url": "http://www.catholic-hierarchy.org/diocese/" + a["href"], } ) next_page = soup.select_one('a:has(img[alt="[next page]"])') if not next_page: break u = "http://www.catholic-hierarchy.org/diocese/" + next_page["href"] df = pd.dataframe(all_data).drop_duplicates() print(df.head(10))
Drucken:
... Parsing http://www.catholic-hierarchy.org/diocese/lax.html Parsing http://www.catholic-hierarchy.org/diocese/lay.html Parsing http://www.catholic-hierarchy.org/diocese/laz.html Name URL 0 Holy See http://www.catholic-hierarchy.org/diocese/droma.html 1 Diocese of Rome http://www.catholic-hierarchy.org/diocese/droma.html 2 Aachen http://www.catholic-hierarchy.org/diocese/da549.html 3 Aachen http://www.catholic-hierarchy.org/diocese/daach.html 4 Aarhus (Århus) http://www.catholic-hierarchy.org/diocese/da566.html 5 Aba http://www.catholic-hierarchy.org/diocese/dabaa.html 6 Abaetetuba http://www.catholic-hierarchy.org/diocese/dabae.html 8 Abakaliki http://www.catholic-hierarchy.org/diocese/dabak.html 9 Abancay http://www.catholic-hierarchy.org/diocese/daban.html 10 Abaradira http://www.catholic-hierarchy.org/diocese/d2a01.html
Das obige ist der detaillierte Inhalt vonSchöne Suppe, analysiert die Liste vieler Einträge und speichert sie im Datenrahmen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heißer Artikel

Hot-Tools-Tags

Heißer Artikel

Heiße Artikel -Tags

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

So verwenden Sie Python, um die ZiPF -Verteilung einer Textdatei zu finden

So herunterladen Sie Dateien in Python

Wie benutze ich eine schöne Suppe, um HTML zu analysieren?

Wie man mit PDF -Dokumenten mit Python arbeitet

Wie kann man mit Redis in Django -Anwendungen zwischenstrichen

Einführung des natürlichen Sprach -Toolkits (NLTK)

Wie führe ich ein tiefes Lernen mit Tensorflow oder Pytorch durch?
