Inhaltsverzeichnis
Richtige Antwort
Heim Backend-Entwicklung Python-Tutorial Schöne Suppe, analysiert die Liste vieler Einträge und speichert sie im Datenrahmen

Schöne Suppe, analysiert die Liste vieler Einträge und speichert sie im Datenrahmen

Feb 10, 2024 am 08:48 AM

Schöne Suppe, analysiert die Liste vieler Einträge und speichert sie im Datenrahmen

Frageninhalt

Derzeit werde ich Daten von Diözesen auf der ganzen Welt sammeln.

Meine Methode funktioniert mit BS4 und Pandas. Ich arbeite derzeit an der Scraping-Logik.

import requests
from bs4 import BeautifulSoup
import pandas as pd

url = "http://www.catholic-hierarchy.org/"

# Send a GET request to the website
response = requests.get(url)

#my approach  to parse the HTML content of the page
soup = BeautifulSoup(response.text, 'html.parser')

# Find the relevant elements containing diocese information
diocese_elements = soup.find_all("div", class_="diocesan")

# Initialize empty lists to store data
dioceses = []
addresses = []

# Extract now data from each diocese element
for diocese_element in diocese_elements:
    # Example: Extracting diocese name
    diocese_name = diocese_element.find("a").text.strip()
    dioceses.append(diocese_name)

    # Example: Extracting address
    address = diocese_element.find("div", class_="address").text.strip()
    addresses.append(address)

#  to save the whole data we create a DataFrame using pandas
data = {'Diocese': dioceses, 'Address': addresses}
df = pd.DataFrame(data)

# Display the DataFrame
print(df)
Nach dem Login kopieren

Aktuell habe ich etwas Seltsames auf meinem Pycharm entdeckt. Ich versuche einen Weg zu finden, alle Daten mithilfe der Pandas-Methoden zu sammeln.


Richtige Antwort


Dieses Beispiel wird Ihnen den Einstieg erleichtern – es analysiert alle Gemeindeseiten, um den Gemeindenamen + die URL zu erhalten und sie in einem Datenrahmen in Panda zu speichern.

Sie können diese URLs dann durchlaufen und weitere Informationen erhalten, die Sie benötigen.

import pandas as pd
import requests
from bs4 import beautifulsoup

chars = "abcdefghijklmnopqrstuvwxyz"
url = "http://www.catholic-hierarchy.org/diocese/la{char}.html"

all_data = []
for char in chars:
    u = url.format(char=char)

    while true:
        print(f"parsing {u}")
        soup = beautifulsoup(requests.get(u).content, "html.parser")
        for a in soup.select("li a[href^=d]"):
            all_data.append(
                {
                    "name": a.text,
                    "url": "http://www.catholic-hierarchy.org/diocese/" + a["href"],
                }
            )

        next_page = soup.select_one('a:has(img[alt="[next page]"])')
        if not next_page:
            break

        u = "http://www.catholic-hierarchy.org/diocese/" + next_page["href"]

df = pd.dataframe(all_data).drop_duplicates()
print(df.head(10))
Nach dem Login kopieren

Drucken:

...
Parsing http://www.catholic-hierarchy.org/diocese/lax.html
Parsing http://www.catholic-hierarchy.org/diocese/lay.html
Parsing http://www.catholic-hierarchy.org/diocese/laz.html

               Name                                                   URL
0          Holy See  http://www.catholic-hierarchy.org/diocese/droma.html
1   Diocese of Rome  http://www.catholic-hierarchy.org/diocese/droma.html
2            Aachen  http://www.catholic-hierarchy.org/diocese/da549.html
3            Aachen  http://www.catholic-hierarchy.org/diocese/daach.html
4    Aarhus (Århus)  http://www.catholic-hierarchy.org/diocese/da566.html
5               Aba  http://www.catholic-hierarchy.org/diocese/dabaa.html
6        Abaetetuba  http://www.catholic-hierarchy.org/diocese/dabae.html
8         Abakaliki  http://www.catholic-hierarchy.org/diocese/dabak.html
9           Abancay  http://www.catholic-hierarchy.org/diocese/daban.html
10        Abaradira  http://www.catholic-hierarchy.org/diocese/d2a01.html
Nach dem Login kopieren

Das obige ist der detaillierte Inhalt vonSchöne Suppe, analysiert die Liste vieler Einträge und speichert sie im Datenrahmen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
2 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Repo: Wie man Teamkollegen wiederbelebt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Abenteuer: Wie man riesige Samen bekommt
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
2 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Repo: Wie man Teamkollegen wiederbelebt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Abenteuer: Wie man riesige Samen bekommt
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Artikel -Tags

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

So verwenden Sie Python, um die ZiPF -Verteilung einer Textdatei zu finden So verwenden Sie Python, um die ZiPF -Verteilung einer Textdatei zu finden Mar 05, 2025 am 09:58 AM

So verwenden Sie Python, um die ZiPF -Verteilung einer Textdatei zu finden

Bildfilterung in Python Bildfilterung in Python Mar 03, 2025 am 09:44 AM

Bildfilterung in Python

So herunterladen Sie Dateien in Python So herunterladen Sie Dateien in Python Mar 01, 2025 am 10:03 AM

So herunterladen Sie Dateien in Python

Wie benutze ich eine schöne Suppe, um HTML zu analysieren? Wie benutze ich eine schöne Suppe, um HTML zu analysieren? Mar 10, 2025 pm 06:54 PM

Wie benutze ich eine schöne Suppe, um HTML zu analysieren?

Wie man mit PDF -Dokumenten mit Python arbeitet Wie man mit PDF -Dokumenten mit Python arbeitet Mar 02, 2025 am 09:54 AM

Wie man mit PDF -Dokumenten mit Python arbeitet

Wie kann man mit Redis in Django -Anwendungen zwischenstrichen Wie kann man mit Redis in Django -Anwendungen zwischenstrichen Mar 02, 2025 am 10:10 AM

Wie kann man mit Redis in Django -Anwendungen zwischenstrichen

Einführung des natürlichen Sprach -Toolkits (NLTK) Einführung des natürlichen Sprach -Toolkits (NLTK) Mar 01, 2025 am 10:05 AM

Einführung des natürlichen Sprach -Toolkits (NLTK)

Wie führe ich ein tiefes Lernen mit Tensorflow oder Pytorch durch? Wie führe ich ein tiefes Lernen mit Tensorflow oder Pytorch durch? Mar 10, 2025 pm 06:52 PM

Wie führe ich ein tiefes Lernen mit Tensorflow oder Pytorch durch?

See all articles