


Zwei spezielle Gerätetreiber-Frameworks im Linux-Kernel: Misc-Subsystem und 3+2+1-Geräteerkennungs-Treiber-Framework
Das Misc-Subsystem ist ein einfaches und flexibles Gerätetreiber-Framework im Linux-Kernel. Es kann zum Implementieren einiger Gerätetreiber verwendet werden, die nicht zu anderen Subsystemen gehören, z. B. Zeichengeräte, virtuelle Geräte, Hybridgeräte usw. Der Vorteil des Misc-Subsystems besteht darin, dass es einfach und benutzerfreundlich ist. Es muss nicht viel Code geschrieben werden und es müssen nur einige grundlegende Betriebsfunktionen implementiert werden. Das Misc-Subsystem weist jedoch auch einige Mängel auf, z. B. die Unfähigkeit, mehrere Geräteinstanzen, Gerätebäume und Hot-Swapping zu unterstützen. Um diese Probleme zu lösen, wird in diesem Artikel ein neues Gerätetreiber-Framework vorgestellt: das 3+2+1-Geräteerkennungs-Treiber-Framework, das auf der Kombination aus verschiedenen Subsystemen und Plattform-Subsystemen basiert und mehr Funktionen und Features erreichen kann.
Verwendung von Sonstigem
In Linux gibt es drei Hauptkategorien von Geräten: Zeichen-, Netzwerk- und Blockgeräte. Beispielsweise sind Zeichengeräte in viele Kategorien unterteilt, und das von diesen Kategorien verwendete Hauptgerät ist markiert In der Datei gibt es aber trotzdem Dutzende Millionen Hardware, und es gibt immer Fische, die durch das Netz schlüpfen. Für diese Charaktergeräte, die schwer zu klassifizieren sind, verwendet Linux „gemischte“ Geräte, um sie einheitlich zu beschreiben , und weisen Sie ihnen ein gemeinsames Hauptgerät Nr. 10 zu. Verwenden Sie diese Gerätenummer nur zur Unterscheidung von Geräten. Zu diesen Geräten gehören hauptsächlich Zufallszahlengeneratoren, LCDs, Taktgeneratoren usw. Darüber hinaus erstellt misc, wie viele Subsysteme, die auch cdev neu kapseln, auch automatisch Gerätedateien, wodurch die Verwendung von class_create() und device_create() bei jedem Schreiben der cdev-Schnittstelle entfällt.
Verschiedene im Kernel bereitgestellte Objekte:
//include/linux/miscdevice.h 55 struct miscdevice { 56 int minor; 57 const char *name; 58 const struct file_operations *fops; 59 struct list_head list; 60 struct device *parent; 61 struct device *this_device; 62 const char *nodename; 63 umode_t mode; 64 };
fops-Schnittstelle nur wie ein Zeichengerät implementieren und ihm einen Minor geben. Wenn der Minor das Makro MISC_DYNAMIC_MINOR (eigentlich 255) verwendet, weist der Kernel automatisch eine Minor-Gerätenummer zu, und andere Kernel haben die Vereinbarung bereits umgesetzt. Die Nebengerätenummer finden Sie unter **"include/linux/miscdevice.h"**. Sobald alles fertig ist, verwenden Sie einfach die folgende API, um sich beim Kernel zu registrieren/abzumelden
178 int misc_register(struct miscdevice * misc) 238 int misc_deregister(struct miscdevice *misc)
sonstige Analyse
Ist es einfach, Sonstiges zu verwenden? Obwohl Sparrow klein und gut ausgestattet ist, können wir die darin enthaltenen vielschichtigen Ideen aufgrund der optimierten Struktur von misc leicht erfassen. Die Entwurfsmethode von misc spiegelt sich in vielen Subsystemen wider, die cdev als Schnittstelle verwenden Die klaren Unterteilungen zwischen ihnen sind: Die Schichtidee ist eine der beiden Säulen von Linux-Treibern (die andere ist die Trennung).Wir können aus den Designideen lernen und die Qualität unserer Fahrer verbessern. Als nächstes analysieren wir kurz den internen Mechanismus verschiedener Dinge.
misc_init
Als Subsystem von Linux führt das Misc-Subsystem die Vorbereitungsarbeiten während des Linux-Startvorgangs durch, die hauptsächlich Folgendes umfassen:Initialisieren der Datenstruktur, Erstellen der entsprechenden Klasse, Erstellen, Initialisieren und Registrieren des CDev-Objekts im Kernel usw. . Mit diesen Grundlagen können wir programmieren und dabei die vielen Vorteile von Sonstiges nutzen.
//drivers/char/misc.c 56 static const struct file_operations misc_fops = { 157 .owner = THIS_MODULE, 158 .open = misc_open, 159 .llseek = noop_llseek, 160 }; 268 static int __init misc_init(void) 269 { 272 #ifdef CONFIG_PROC_FS 273 proc_create("misc", 0, NULL, &misc_proc_fops); 274 #endif 275 misc_class = class_create(THIS_MODULE, "misc"); 281 if (register_chrdev(MISC_MAJOR,"misc",&misc_fops)) 282 goto fail_printk; 283 misc_class->devnode = misc_devnode; 284 return 0; 292 } 293 subsys_initcall(misc_init);
“
misc_init() –293–>Das sonstige Subsystem wird beim Systemstart initialisiert
–273–>Abhängig von der Systemkonfiguration muss möglicherweise die /proc-Schnittstelle bereitgestellt werden
–275–>Erstellen Sie in /sysfs eine Klasse mit dem Namen misc
–281–>Unter Verwendung der statischen Hauptgerätenummer (10) und des gekapselten Methodensatzes misc_fops erstellt register_chrdev() intern ein CDev-Objekt und verwendet diese beiden Parameter, um es zu initialisieren und beim Kernel zu registrieren für alle Die Gerätenummer des promiskuitiven Geräts. Informationen zur Beziehung zwischen cdev-Objekten und Gerätenummern finden Sie unter cdev_map.
–158–>fops, die vom cdev-Objekt von misc verwendet werden, ist offensichtlich derselbe wie bei gewöhnlichen Zeichengeräten, chrdev_open()->misc_open().
”
misc_register
接下来,老规矩,我们从”XXX_register”开始分析,在Linux内核中,这些”XXX_register”往往就是一个设备对象注册到内核的接口,是研究当相应对象注册进去之后内核动作的最佳入口。
178 int misc_register(struct miscdevice * misc) 179 { 180 dev_t dev; 187 if (misc->minor == MISC_DYNAMIC_MINOR) { 188 int i = find_first_zero_bit(misc_minors, DYNAMIC_MINORS); 193 misc->minor = DYNAMIC_MINORS - i - 1; 194 set_bit(i, misc_minors); 195 } 206 dev = MKDEV(MISC_MAJOR, misc->minor); 208 misc->this_device = device_create(misc_class, misc->parent, dev, 209 misc, "%s", misc->name); 210 if (IS_ERR(misc->this_device)) { 211 int i = DYNAMIC_MINORS - misc->minor - 1; 212 if (i = 0) 213 clear_bit(i, misc_minors); 214 err = PTR_ERR(misc->this_device); 216 } 222 list_add(&misc->list, &misc_list); 226 }
“
misc_register()
–187–> 如果指定的minor是动态分配,那么进入相关语句块。
–188–> 使dev用位图遍历API-find_first_zero_bit找到最小未用的设备号。
–193–> 得到分配好的次设备号。
–208–> (根据设备号)创建设备文件,使用的是misc_init中创建的misc_class,至此就可以实现misc设备文件的自动创建。就相当与我们在纯粹的cdev驱动中使用class_create()+device_create()创建设备文件。一个设备文件和一个设备号相联系,而misc的所有的设备号都和misc_init创建的cdev对象相联系,所以打开的任何一个misc设备文件首先回调的就是(chrdev_open()->)misc_open()。
–222–> 关键,将这个新分配的misc加入到misc链表中,用于管理所有的misc设备,便于misc_open()提取具体设备的fops。”
misc_open
构建的misc子系统,将设备添加到了该子系统中,接下来我们来看一下应用层程序是如何打开一个misc设备的。由于misc也是一种字符设备,所以其提供的接口也是位于/dev中。但是正如misc的定义,其中的设备五花八门却共用同一个主设备号,这就意味着最终被chrdev_open回调的misc_open一定要具备根据被打开的不同文件为file结构准备不同的操作方法这一能力,即在驱动中实现对子设备的识别,或者称之为”多态”。
112 static int misc_open(struct inode * inode, struct file * file) 113 { 114 int minor = iminor(inode); 115 struct miscdevice *c; 116 int err = -ENODEV; 117 const struct file_operations *new_fops = NULL; 121 list_for_each_entry(c, &misc_list, list) { 122 if (c->minor == minor) { 123 new_fops = fops_get(c->fops); 124 break; 125 } 126 } 144 replace_fops(file, new_fops); 145 if (file->f_op->open) { 146 file->private_data = c; 147 err = file->f_op->open(inode,file); 148 } 152 }
“
misc_open()
–121–>遍历misc设备链表,根据被打开的设备的次设备号找到设备对象。
–123–>存储这个设备对象的操作方法集unique_fops。
–144–>将misc设备具体的操作方法集unique_fops替换到filp中的f_op中,这个位置原来是misc的cdev对象的fops,filp带着这个unique_fops从open()返回,就实现了不同的设备对应不同的操作方法,即面向对象的”多态””
3+2+1多设备识别驱动模型
通过上述对misc机制的分析,我们不难总结出一个支持设备识别的3+2+1驱动模型(3个函数+2个数据结构+1个封装):
- 初始化整个驱动组的**xxx_init()**,通常用模块加载函数或总线的probe函数实现;
- 用于注册一个子驱动的**xxx_register()**,需要EXPORT到符号表;
- 能够根据传入的inode识别具体的设备并将其操作方法集放到filp中的**xxx_open()**。
+
- 用于存储每一个驱动对象的通用链表或数组+priv_data
- 用于存储子设备号的位图。
+
- 将所有的不同的设备用一个统一的结构进行封装
至此,我们就可以写一写这个3+2+1驱动模型的模板。
1个封装
struct multidevice{ struct list_head head; int minor; struct file_operations* fops; void *priv; //私有数据,供read/write等接口识别的信息,以及其他数据都放这里 };
2个数据结构
struct list_head multi_dev_list; unsigned int minors_map; //根据设备号数目的不同选数据类型or数组
3个函数
int major,baseminor = 0,max_dev = sizeof(minors_map)*8; #define DEV_NAME "multi_device" struct class *cls; xxx_open(struct inode *inode,struct file *file){ int minor = iminor(inode); struct multidevice *dp; const struct file_operations *new_fops = NULL; list_for_each_entry(dp, &multi_dev_list, head) { if (dp->minor == minor) { new_fops = fops_get(dp->fops); break; } } replace_fops(file, new_fops); if (file->f_op->open) { file->private_data = dp file->f_op->open(inode,file); } } xxx_init(void){ dev_t devno, INIT_LIST_HEAD(&multi_dev_list); init_map(&minors_map); struct cdev *multi_cdev = cdev_alloc(); cdev_init(multi_cdev, multi_fops); alloc_chrdev_region(&devno, baseminor, count,DEV_NAME); major = MAJOR(devno); cdev_add(multi_cdev , devno, count); cls = class_create(THIS_MODULE, DEV_NAME); } /*---------------下面是给待加驱动用的----------------------*/ xxx_register(struct *multidevice dev){ dev_t dev; if (dev->minor == MISC_DYNAMIC_MINOR) { int i = find_first_zero_bit(minors_map, DYNAMIC_MINORS); dev->minor = DYNAMIC_MINORS - i - 1; set_bit(i, minors_map); } dev_t pri_devno = MKDEV(major, dev->minor); device_create(multi_class, NULL, pri_devno, "%s", misc->name); list_add(dev->head, &multi_dev_list); } EXPORT_SYMBOL(xxx_register)
通过本文,我们了解了misc子系统和3+2+1设备识别驱动框架的原理和方法,它们可以用来实现一些特殊的设备驱动,如识别设备,虚拟设备,混合设备等。我们应该根据实际需求选择合适的框架,并遵循一些基本原则,如使用正确的注册和注销函数,使用正确的文件操作结构体,使用正确的设备树节点等。misc子系统和3+2+1设备识别驱动框架是Linux内核中两个有用而灵活的设备驱动框架,它们可以提升设备驱动的兼容性和可扩展性,也可以提升开发者的效率和质量。希望本文能够对你有所帮助和启发。
Das obige ist der detaillierte Inhalt vonZwei spezielle Gerätetreiber-Frameworks im Linux-Kernel: Misc-Subsystem und 3+2+1-Geräteerkennungs-Treiber-Framework. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Schritte zum Starten von Nginx unter Linux: Überprüfen Sie, ob Nginx installiert ist. Verwenden Sie SystemCTL Start Nginx, um den Nginx -Dienst zu starten. Verwenden Sie SystemCTL aktivieren NGINX, um das automatische Start von NGINX beim Systemstart zu aktivieren. Verwenden Sie den SystemCTL -Status NGINX, um zu überprüfen, ob das Startup erfolgreich ist. Besuchen Sie http: // localhost in einem Webbrowser, um die Standard -Begrüßungsseite anzuzeigen.

So bestätigen Sie, ob Nginx gestartet wird: 1. Verwenden Sie die Befehlszeile: SystemCTL Status Nginx (Linux/Unix), Netstat -ano | FindStr 80 (Windows); 2. Überprüfen Sie, ob Port 80 geöffnet ist; 3. Überprüfen Sie die Nginx -Startmeldung im Systemprotokoll. 4. Verwenden Sie Tools von Drittanbietern wie Nagios, Zabbix und Icinga.

Der Server verfügt nicht über die Berechtigung, auf die angeforderte Ressource zuzugreifen, was zu einem NGINX 403 -Fehler führt. Zu den Lösungen gehören: Überprüfung der Dateiberechtigungen. Überprüfen Sie die Konfiguration .htaccess. Überprüfen Sie die Nginx -Konfiguration. Konfigurieren Sie Selinux -Berechtigungen. Überprüfen Sie die Firewall -Regeln. Fehlerbehebung bei anderen Ursachen wie Browserproblemen, Serverausfällen oder anderen möglichen Fehlern.

Die wichtigsten Unterschiede zwischen CentOS und Ubuntu sind: Ursprung (CentOS stammt von Red Hat, für Unternehmen; Ubuntu stammt aus Debian, für Einzelpersonen), Packungsmanagement (CentOS verwendet yum, konzentriert sich auf Stabilität; Ubuntu verwendet apt, für hohe Aktualisierungsfrequenz), Support Cycle (Centos) (CENTOS bieten 10 Jahre. Tutorials und Dokumente), Verwendungen (CentOS ist auf Server voreingenommen, Ubuntu ist für Server und Desktops geeignet). Weitere Unterschiede sind die Einfachheit der Installation (CentOS ist dünn)

Docker verwendet Linux -Kernel -Funktionen, um eine effiziente und isolierte Anwendungsumgebung zu bieten. Sein Arbeitsprinzip lautet wie folgt: 1. Der Spiegel wird als schreibgeschützte Vorlage verwendet, die alles enthält, was Sie für die Ausführung der Anwendung benötigen. 2. Das Union File System (UnionFS) stapelt mehrere Dateisysteme, speichert nur die Unterschiede, speichert Platz und beschleunigt. 3. Der Daemon verwaltet die Spiegel und Container, und der Kunde verwendet sie für die Interaktion. 4. Namespaces und CGroups implementieren Container -Isolation und Ressourcenbeschränkungen; 5. Mehrere Netzwerkmodi unterstützen die Containerverbindung. Nur wenn Sie diese Kernkonzepte verstehen, können Sie Docker besser nutzen.

CentOS wird 2024 geschlossen, da seine stromaufwärts gelegene Verteilung RHEL 8 geschlossen wurde. Diese Abschaltung wirkt sich auf das CentOS 8 -System aus und verhindert, dass es weiterhin Aktualisierungen erhalten. Benutzer sollten eine Migration planen, und empfohlene Optionen umfassen CentOS Stream, Almalinux und Rocky Linux, um das System sicher und stabil zu halten.

CentOS -Installationsschritte: Laden Sie das ISO -Bild herunter und verbrennen Sie bootfähige Medien. Starten und wählen Sie die Installationsquelle; Wählen Sie das Layout der Sprache und Tastatur aus. Konfigurieren Sie das Netzwerk; Partition die Festplatte; Setzen Sie die Systemuhr; Erstellen Sie den Root -Benutzer; Wählen Sie das Softwarepaket aus; Starten Sie die Installation; Starten Sie nach Abschluss der Installation von der Festplatte neu und starten Sie von der Festplatte.

Wie benutze ich Docker Desktop? Docker Desktop ist ein Werkzeug zum Ausführen von Docker -Containern auf lokalen Maschinen. Zu den zu verwendenden Schritten gehören: 1.. Docker Desktop installieren; 2. Start Docker Desktop; 3.. Erstellen Sie das Docker -Bild (mit Dockerfile); 4. Build Docker Image (mit Docker Build); 5. Docker -Container ausführen (mit Docker Run).
