


Projektpraxis für maschinelles Lernen in Python: Lernen Sie, ein intelligentes Empfehlungssystem aufzubauen
Das intelligente Empfehlungssystem ist ein Empfehlungs-Algorithmus, der in E-Commerce, Streaming-Medien, sozialen Medien und anderen Bereichen weit verbreitet ist. Sein Zweck besteht darin, Benutzern personalisierte Empfehlungsergebnisse bereitzustellen und die Zufriedenheit und Teilnahme der Benutzer zu verbessern. Intelligente Empfehlungssysteme basieren in der Regel auf „maschinellem Lernen“ und „lernen“ die Interessen und Vorlieben der Benutzer durch die Analyse der historischen Verhaltensdaten der Benutzer. Basierend auf diesen Interessen und Präferenzen empfiehlt das System den Nutzern dann Inhalte oder Produkte, die für sie von Interesse sein könnten. Um ein intelligentes Empfehlungssystem aufzubauen, müssen Sie zunächst Benutzerdaten sammeln und vorverarbeiten. Zu diesen Daten können Kaufdatensätze, Browsing-Datensätze, Suchdatensätze, Klickdatensätze usw. der Benutzer gehören. Diese Daten können dann verwendet werden, um ein Modell für maschinelles Lernen zu trainieren, das in der Lage ist, das Ausmaß des Interesses eines Benutzers an verschiedenen Artikeln vorherzusagen. In
Pythonkönnen Sie einige ausgereifte Bibliotheken für maschinelles Lernen verwenden, um Empfehlungssysteme wie Scikit-Learn und Surprise zu erstellen. scikit-learn bietet viele häufig verwendete Algorithmen für maschinelles Lernen, während Surprise eine Bibliothek ist, die speziell zum Erstellen von Empfehlungssystemen verwendet wird. Hier ist ein einfaches
PythonCodebeispiel, das zeigt, wie man mit scikit-learn ein einfaches Empfehlungssystem erstellt:
import numpy as np
from sklearn.neighbors import NearestNeighbors
# Load the user-item interaction data
data = np.loadtxt("data.csv", delimiter=",")
# Create a Nearest Neighbors model
model = NearestNeighbors(metric="cosine", alGorithm="brute")
# Fit the model to the data
model.fit(data)
# Get recommendations for a user
user_id = 10
neighbors = model.kneighbors(data[user_id, :], n_neighbors=10)
# Print the recommended items
for item_id in neighbors[1]:
print(item_id)
Das obige ist der detaillierte Inhalt vonProjektpraxis für maschinelles Lernen in Python: Lernen Sie, ein intelligentes Empfehlungssystem aufzubauen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

Bei der Verwendung von Pythons Pandas -Bibliothek ist das Kopieren von ganzen Spalten zwischen zwei Datenrahmen mit unterschiedlichen Strukturen ein häufiges Problem. Angenommen, wir haben zwei Daten ...

In dem Artikel werden beliebte Python-Bibliotheken wie Numpy, Pandas, Matplotlib, Scikit-Learn, TensorFlow, Django, Flask und Anfragen erörtert, die ihre Verwendung in wissenschaftlichen Computing, Datenanalyse, Visualisierung, maschinellem Lernen, Webentwicklung und h beschreiben

Wie hört Uvicorn kontinuierlich auf HTTP -Anfragen an? Uvicorn ist ein leichter Webserver, der auf ASGI basiert. Eine seiner Kernfunktionen ist es, auf HTTP -Anfragen zu hören und weiterzumachen ...

Wie erstellt in Python ein Objekt dynamisch über eine Zeichenfolge und ruft seine Methoden auf? Dies ist eine häufige Programmieranforderung, insbesondere wenn sie konfiguriert oder ausgeführt werden muss ...

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Fastapi ...

Regelmäßige Ausdrücke sind leistungsstarke Tools für Musteranpassung und Textmanipulation in der Programmierung, wodurch die Effizienz bei der Textverarbeitung in verschiedenen Anwendungen verbessert wird.
