


Mit Python Machine Learning von Null auf Eins: Wir führen Sie Schritt für Schritt zur Beherrschung der Grundprinzipien des maschinellen Lernens
1. Was ist maschinelles Lernen?
Maschinelles Lernen ist ein Zweig der künstlichen Intelligenz, der darauf abzielt, Computer in die Lage zu versetzen, wie Menschen zu lernen und zu denken. Algorithmen für maschinelles Lernen können Muster aus Daten lernen und diese Muster verwenden, um Vorhersagen oder Entscheidungen zu treffen.
2. Grundprinzipien des maschinellen Lernens
Das Grundprinzip des maschinellen Lernalgorithmus besteht darin, ein Modell anhand von Daten zu trainieren und das trainierte Modell dann zu verwenden, um Vorhersagen oder Entscheidungen zu treffen. Daten sind die Eingabe für den Algorithmus für maschinelles Lernen und das Modell ist die Ausgabe des Algorithmus für maschinelles Lernen.
import numpy as np import pandas as pd from sklearn.linear_model import LinearRegression # 加载数据 data = pd.read_csv("data.csv") # 分割数据 X = data.drop("target", axis=1) y = data["target"] # 训练模型 model = LinearRegression() model.fit(X, y) # 预测结果 predictions = model.predict(X) # 评估模型 score = model.score(X, y) print("模型得分:", score)
3. Gängige Algorithmen für maschinelles Lernen
Es gibt viele Algorithmen, die häufig beim maschinellen Lernen verwendet werden, aber sie können alle in zwei Hauptkategorien unterteilt werden: überwachtes Lernen und unüberwachtes Lernen. Für überwachte Lernalgorithmen sind gekennzeichnete Daten erforderlich, während für unüberwachte Lernalgorithmen keine gekennzeichneten Daten erforderlich sind.
4. Anwendung von maschinellem Lernen
Maschinelles Lernen hat ein breites Anwendungsspektrum, unter anderem in den folgenden Bereichen:
- Verarbeitung natürlicher Sprache Bilderkennung
- Spracherkennung
- Medizinische Diagnose
- Finanzprognose
- Empfehlungssystem
5. Die zukünftige Entwicklung des maschinellen Lernens
Maschinelles Lernen ist derzeit eines der heißesten Forschungsfelder mit großem Potenzial für zukünftige Entwicklungen. Da die Datenmenge weiter wächst und die Rechenleistung immer besser wird, werden Algorithmen für maschinelles Lernen immer leistungsfähiger und in immer mehr Bereichen eine Rolle spielen.Das obige ist der detaillierte Inhalt vonMit Python Machine Learning von Null auf Eins: Wir führen Sie Schritt für Schritt zur Beherrschung der Grundprinzipien des maschinellen Lernens. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

Bei der Verwendung von Pythons Pandas -Bibliothek ist das Kopieren von ganzen Spalten zwischen zwei Datenrahmen mit unterschiedlichen Strukturen ein häufiges Problem. Angenommen, wir haben zwei Daten ...

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

Regelmäßige Ausdrücke sind leistungsstarke Tools für Musteranpassung und Textmanipulation in der Programmierung, wodurch die Effizienz bei der Textverarbeitung in verschiedenen Anwendungen verbessert wird.

Wie hört Uvicorn kontinuierlich auf HTTP -Anfragen an? Uvicorn ist ein leichter Webserver, der auf ASGI basiert. Eine seiner Kernfunktionen ist es, auf HTTP -Anfragen zu hören und weiterzumachen ...

In dem Artikel werden beliebte Python-Bibliotheken wie Numpy, Pandas, Matplotlib, Scikit-Learn, TensorFlow, Django, Flask und Anfragen erörtert, die ihre Verwendung in wissenschaftlichen Computing, Datenanalyse, Visualisierung, maschinellem Lernen, Webentwicklung und h beschreiben

Wie erstellt in Python ein Objekt dynamisch über eine Zeichenfolge und ruft seine Methoden auf? Dies ist eine häufige Programmieranforderung, insbesondere wenn sie konfiguriert oder ausgeführt werden muss ...
