Python-Computer-Vision-Projektpraxis: Bilderkennungsanwendungen von Grund auf erstellen

WBOY
Freigeben: 2024-02-19 21:21:30
nach vorne
578 Leute haben es durchsucht

Python-Computer-Vision-Projektpraxis: Bilderkennungsanwendungen von Grund auf erstellen

  • Größe von Bildern ändern
  • Bildformat konvertieren
  • Filtern
  • Verbesserung

Feature-Extraktion

Die Merkmalsextraktion ist eine weitere wichtige Aufgabe des Computer Vision. Dabei geht es darum, diskriminierende Informationen aus Bildern zu extrahieren. Zu den häufig verwendeten Methoden zur Merkmalsextraktion gehören:

  • Kantenerkennung
  • Eckenerkennung
  • Farbhistogramm
  • Lokaler Binärmodus

Kategorie

Klassifizierung ist das ultimative Ziel der Computer Vision. Dabei werden Bilder vordefinierten Kategorien zugeordnet. Zu den häufig verwendeten Klassifizierungsmethoden gehören:

  • K nächster Nachbar
  • Unterstützt Vector Machine
  • Entscheidungsbaum
  • Neuronales Netzwerk

Bilderkennungsanwendungen erstellen

Da wir nun die Grundlagen des Computer Vision verstehen, können wir mit der Entwicklung einer Bilderkennungsanwendung beginnen. Wir werden python und OpenCV verwenden, um diese Aufgabe zu erfüllen.

Zuerst müssen wir die notwendigen Bibliotheken importieren:

import cv2
import numpy as np
Nach dem Login kopieren

Dann müssen wir das Bild laden:

image = cv2.imread("image.jpg")
Nach dem Login kopieren

Als nächstes müssen wir das Bild vorverarbeiten. Wir ändern die Größe des Bildes, konvertieren das Bildformat und wenden die Filterung an:

image = cv2.resize(image, (224, 224))
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
image = cv2.GaussianBlur(image, (5, 5), 0)
Nach dem Login kopieren

Jetzt können wir die Merkmale des Bildes extrahieren. Wir werden Kantenerkennung und Eckenerkennung verwenden:

edges = cv2.Canny(image, 100, 200)
corners = cv2.GoodFeaturesToTrack(image, 25, 0.01, 10)
Nach dem Login kopieren

Endlich können wir die Bilder klassifizieren. Wir werden den K-Klassifikator für den nächsten Nachbarn verwenden:

knn = cv2.ml.KNearest_create()
knn.train(train_data, train_labels)
result = knn.predict(image)
Nach dem Login kopieren

Zusammenfassung

Dieses Tutorial erklärt, wie man eine Bilderkennungsanwendung von Grund auf erstellt. Wir decken alle Aspekte der Bildvorverarbeitung, Merkmalsextraktion und Klassifizierung ab. Mit diesem Tutorial können Sie Ihre eigenen Bilderkennungsanwendungen für eine Vielzahl von Aufgaben wie Objekterkennung, Gesichtserkennung und medizinische Diagnose erstellen.

Das obige ist der detaillierte Inhalt vonPython-Computer-Vision-Projektpraxis: Bilderkennungsanwendungen von Grund auf erstellen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Quelle:lsjlt.com
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage