


Tipps zur Leistungsoptimierung bei der gleichzeitigen Python-Programmierung: Machen Sie Ihren Code schneller und effizienter
1. Typtipps verwenden
Typhinweise können dem Python Optimierer dabei helfen, bessere Schlussfolgerungen zu ziehen, was zu einem optimierteren Code führt. Die Verwendung von Typhinweisen verhindert Fehler bei der Typprüfung und verbessert die allgemeine Lesbarkeit und Wartbarkeit Ihres Codes.
Beispiel:
def my_function(x: int, y: str) -> int: return x + int(y)
2. Nutzen Sie Vektorisierungsoperationen
Die Verwendung vektorisierter Operationen, die von Bibliotheken wie NumPy bereitgestellt werden, kann die Verarbeitungsgeschwindigkeit großer Arraysund Matrizen erheblich verbessern. Diese Vorgänge verarbeiten Daten parallel und machen die Datenverarbeitung effizienter.
Beispiel:
import numpy as np # 使用向量化操作求和 my_array = np.array([1, 2, 3, 4, 5]) result = np.sum(my_array)
3. Cache-Berechnung
Bei sich stark wiederholenden Berechnungen kann das Caching der Ergebnisse unnötige wiederholte Berechnungen vermeiden. Durch die Verwendung des @lru_cache
-Dekorators kann eine Funktion ihre Ergebnisse zwischenspeichern und so die Ausführungsgeschwindigkeit erhöhen.
Beispiel:
from functools import lru_cache @lru_cache(maxsize=100) def fibonacci(n: int) -> int: if n < 2: return n else: return fibonacci(n-1) + fibonacci(n-2)
4. Verwenden Sie Coroutinen und asynchrone Programmierung
In E/A-intensiven Anwendungen kann die Verwendung von Coroutinen und asynchroner Programmierung die Leistung Ihres Codes verbessern. Mit Coroutinen können Sie die Funktionsausführung anhalten und fortsetzen, ohne die Ereignisschleife zu blockieren, während Sie mit der asynchronen Programmierung parallele Aufgaben erledigen können.
Beispiel-Coroutine:
async def fetch_data(): async with aioHttp.ClientSession() as session: async with session.get("https://example.com") as resp: return await resp.text()
5. Optimieren Sie die Zeichenfolgenverarbeitung
StringVerkettung ist eine teure Operation in Python. Um die String-Verarbeitung zu optimieren, sollten Sie join
oder String-Interpolationsoperationen in Betracht ziehen oder einen String-Puffer vorab zuweisen.
Beispiel:
# 使用字符串插值 my_string = f"My name is {first_name} {last_name}" # 使用预分配字符串缓冲区 my_buffer = "" for item in my_list: my_buffer += str(item) + "," my_string = my_buffer[:-1]
6. Vermeiden Sie unnötige Kopien
Das Erstellen von Objektkopien beansprucht zusätzlichen Speicher und erhöht den Overhead. Um unnötige Kopien zu vermeiden, verwenden Sie Slices oder Ansichten, um Objekte zu ändern, anstatt neue zu erstellen.
Beispiel:
# 使用切片修改列表 my_list[0] = 100 # 使用视图修改字典 my_dict.viewkeys().add("new_key")
7. Nutzen Sie Leistungsanalysetools
Verwenden Sie ein Leistungsanalysetool wie , um die zeitaufwändigsten Teile Ihres Codes zu identifizieren. Diese Tools können Ihnen dabei helfen, Ihre Optimierungsbemühungen zu priorisieren. cProfile
或 line_profiler
Beispiel mit cProfile:
import cProfile def my_function(): # ... if __name__ == "__main__": cProfile.run("my_function()")
8. Erwägen Sie die Verwendung von Compiler-Optimierungen
Für Anwendungen, die eine extrem hohe Leistung erfordern, sollten Sie die Verwendung eines Compiler-Optimierers wie Cython oder PyPy in Betracht ziehen. Diese Optimierer wandeln Python-Code in schnelleren nativen Code um.
Fazit
Durch die Anwendung dieser Optimierungstipps können Sie die Leistung Ihres Python-Codes erheblich verbessern. Durch die Reduzierung des Overheads, die Nutzung von Parallelisierung und Caching-Ergebnissen können Sie schnellere und reaktionsfähigere Anwendungen erstellen. Diese Tipps sind wichtig, um die Leistung verschiedener Anwendungen wie Datenverarbeitung,Machine Learning und WEB-Anwendungen zu verbessern.
Das obige ist der detaillierte Inhalt vonTipps zur Leistungsoptimierung bei der gleichzeitigen Python-Programmierung: Machen Sie Ihren Code schneller und effizienter. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

Bei der Verwendung von Pythons Pandas -Bibliothek ist das Kopieren von ganzen Spalten zwischen zwei Datenrahmen mit unterschiedlichen Strukturen ein häufiges Problem. Angenommen, wir haben zwei Daten ...

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Wie hört Uvicorn kontinuierlich auf HTTP -Anfragen an? Uvicorn ist ein leichter Webserver, der auf ASGI basiert. Eine seiner Kernfunktionen ist es, auf HTTP -Anfragen zu hören und weiterzumachen ...

Wie erstellt in Python ein Objekt dynamisch über eine Zeichenfolge und ruft seine Methoden auf? Dies ist eine häufige Programmieranforderung, insbesondere wenn sie konfiguriert oder ausgeführt werden muss ...

In dem Artikel werden beliebte Python-Bibliotheken wie Numpy, Pandas, Matplotlib, Scikit-Learn, TensorFlow, Django, Flask und Anfragen erörtert, die ihre Verwendung in wissenschaftlichen Computing, Datenanalyse, Visualisierung, maschinellem Lernen, Webentwicklung und h beschreiben

Fastapi ...

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...
