


Tutorial zum maschinellen Lernen in Python für Anfänger: Erstellen Sie Schritt für Schritt Ihr erstes Modell für maschinelles Lernen
Maschinelles Lernen verändert die Art und Weise, wie wir mit der Welt interagieren, in unglaublichem Tempo. Von selbstfahrenden Autos bis hin zur medizinischen Diagnostik ist maschinelles Lernen mittlerweile in vielen verschiedenen Bereichen allgegenwärtig. Wenn Sie Ihre eigene Reise zum maschinellen Lernen beginnen möchten, dann ist dieses „Python-Tutorial zum maschinellen Lernen“ genau das Richtige für Sie. Wir helfen Ihnen Schritt für Schritt beim Aufbau Ihrer ersten Anwendung für maschinelles Lernen, beginnend mit grundlegenden Konzepten. 1. Verstehen Sie die Grundkonzepte des maschinellen Lernens
Maschinelles Lernen ist im Wesentlichen eine Disziplin, die es Computersystemen ermöglicht, automatisch aus Daten zu lernen und daraus Wissen zu extrahieren. Dadurch kann das System seine Leistung verbessern, ohne dass es „programmiert“ werden muss. Zu den gängigen Algorithmen für maschinelles Lernen gehören überwachtes Lernen, unüberwachtes Lernen und verstärkendes Lernen.
2. Wählen Sie eine geeignete Bibliothek für maschinelles LernenIn Python stehen viele verschiedene Bibliotheken für maschinelles Lernen zur Auswahl. Zu den beliebtesten gehören Scikit-Learn, Keras und
Tensorflow. Jede dieser Bibliotheken hat ihre eigenen Vor- und Nachteile, daher müssen Sie bei der Auswahl einer Bibliothek Ihre spezifischen Bedürfnisse berücksichtigen.
3. Bereiten Sie Ihre Daten vorMaschinelle Lernalgorithmen benötigen Daten zum Lernen. Sie können Daten aus einer Vielzahl von Quellen abrufen, darunter öffentliche Datensätze, das Web und Ihre eigene
Datenbank. Bevor Sie die Daten für das Training verwenden, müssen Sie sie vorverarbeiten, um die Verarbeitung durch den Algorithmus zu erleichtern.
4. Wählen Sie einen geeigneten Algorithmus für maschinelles LernenBasierend auf Ihren Daten und Ihrer Aufgabe müssen Sie einen geeigneten Algorithmus für maschinelles Lernen auswählen. Es stehen viele verschiedene Algorithmen zur Auswahl, darunter lineare Regression, logistische Regression, Entscheidungsbäume und Support-Vektor-Maschinen.
5. Trainieren Sie Ihr maschinelles LernmodellSobald Sie einen Algorithmus ausgewählt haben, müssen Sie ihn mithilfe von Trainingsdaten trainieren. Der Trainingsprozess umfasst die Eingabe von Daten in den Algorithmus und die Möglichkeit, dass der Algorithmus aus den Daten lernt. Nach Abschluss des Trainings verfügen Sie über ein trainiertes Modell, das neue Daten klassifizieren oder regressieren kann.
6. Bewerten Sie Ihr maschinelles LernmodellBevor Sie Ihr maschinelles Lernmodell auf reale Daten anwenden, müssen Sie es auswerten. Zu den gängigen Methoden zur Bewertung von Modellen gehören Präzision, Rückruf und F1-Score.
7. Stellen Sie Ihr maschinelles Lernmodell bereitSobald Sie mit Ihrem Modell für maschinelles Lernen zufrieden sind, können Sie es in der Produktion bereitstellen. Zu den gängigen Methoden zur Bereitstellung von Modellen gehören Cloud-Plattformen und Edge-Geräte.
8. Optimieren Sie Ihr maschinelles LernmodellMit der Zeit kann Ihr maschinelles Lernmodell veraltet sein. Um die Genauigkeit Ihres Modells aufrechtzuerhalten, müssen Sie es regelmäßig „optimieren“. Zu den gängigen Methoden zur Optimierung eines Modells gehören das erneute Trainieren des Modells, das Anpassen von Hyperparametern und die Verwendung verschiedener Algorithmen.
Das obige ist der detaillierte Inhalt vonTutorial zum maschinellen Lernen in Python für Anfänger: Erstellen Sie Schritt für Schritt Ihr erstes Modell für maschinelles Lernen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



PHP und Python haben ihre eigenen Vor- und Nachteile, und die Wahl hängt von den Projektbedürfnissen und persönlichen Vorlieben ab. 1.PHP eignet sich für eine schnelle Entwicklung und Wartung großer Webanwendungen. 2. Python dominiert das Gebiet der Datenwissenschaft und des maschinellen Lernens.

Aktivieren Sie die Pytorch -GPU -Beschleunigung am CentOS -System erfordert die Installation von CUDA-, CUDNN- und GPU -Versionen von Pytorch. Die folgenden Schritte führen Sie durch den Prozess: Cuda und Cudnn Installation Bestimmen Sie die CUDA-Version Kompatibilität: Verwenden Sie den Befehl nvidia-smi, um die von Ihrer NVIDIA-Grafikkarte unterstützte CUDA-Version anzuzeigen. Beispielsweise kann Ihre MX450 -Grafikkarte CUDA11.1 oder höher unterstützen. Download und installieren Sie Cudatoolkit: Besuchen Sie die offizielle Website von Nvidiacudatoolkit und laden Sie die entsprechende Version gemäß der höchsten CUDA -Version herunter und installieren Sie sie, die von Ihrer Grafikkarte unterstützt wird. Installieren Sie die Cudnn -Bibliothek:

Python und JavaScript haben ihre eigenen Vor- und Nachteile in Bezug auf Gemeinschaft, Bibliotheken und Ressourcen. 1) Die Python-Community ist freundlich und für Anfänger geeignet, aber die Front-End-Entwicklungsressourcen sind nicht so reich wie JavaScript. 2) Python ist leistungsstark in Bibliotheken für Datenwissenschaft und maschinelles Lernen, während JavaScript in Bibliotheken und Front-End-Entwicklungsbibliotheken und Frameworks besser ist. 3) Beide haben reichhaltige Lernressourcen, aber Python eignet sich zum Beginn der offiziellen Dokumente, während JavaScript mit Mdnwebdocs besser ist. Die Wahl sollte auf Projektbedürfnissen und persönlichen Interessen beruhen.

Docker verwendet Linux -Kernel -Funktionen, um eine effiziente und isolierte Anwendungsumgebung zu bieten. Sein Arbeitsprinzip lautet wie folgt: 1. Der Spiegel wird als schreibgeschützte Vorlage verwendet, die alles enthält, was Sie für die Ausführung der Anwendung benötigen. 2. Das Union File System (UnionFS) stapelt mehrere Dateisysteme, speichert nur die Unterschiede, speichert Platz und beschleunigt. 3. Der Daemon verwaltet die Spiegel und Container, und der Kunde verwendet sie für die Interaktion. 4. Namespaces und CGroups implementieren Container -Isolation und Ressourcenbeschränkungen; 5. Mehrere Netzwerkmodi unterstützen die Containerverbindung. Nur wenn Sie diese Kernkonzepte verstehen, können Sie Docker besser nutzen.

Minio-Objektspeicherung: Hochleistungs-Bereitstellung im Rahmen von CentOS System Minio ist ein hochleistungsfähiges, verteiltes Objektspeichersystem, das auf der GO-Sprache entwickelt wurde und mit Amazons3 kompatibel ist. Es unterstützt eine Vielzahl von Kundensprachen, darunter Java, Python, JavaScript und Go. In diesem Artikel wird kurz die Installation und Kompatibilität von Minio zu CentOS -Systemen vorgestellt. CentOS -Versionskompatibilitätsminio wurde in mehreren CentOS -Versionen verifiziert, einschließlich, aber nicht beschränkt auf: CentOS7.9: Bietet einen vollständigen Installationshandbuch für die Clusterkonfiguration, die Umgebungsvorbereitung, die Einstellungen von Konfigurationsdateien, eine Festplattenpartitionierung und Mini

Pytorch Distributed Training on CentOS -System erfordert die folgenden Schritte: Pytorch -Installation: Die Prämisse ist, dass Python und PIP im CentOS -System installiert sind. Nehmen Sie abhängig von Ihrer CUDA -Version den entsprechenden Installationsbefehl von der offiziellen Pytorch -Website ab. Für CPU-Schulungen können Sie den folgenden Befehl verwenden: PipinstallTorChTorChVisionTorChaudio Wenn Sie GPU-Unterstützung benötigen, stellen Sie sicher, dass die entsprechende Version von CUDA und CUDNN installiert ist und die entsprechende Pytorch-Version für die Installation verwenden. Konfiguration der verteilten Umgebung: Verteiltes Training erfordert in der Regel mehrere Maschinen oder mehrere Maschinen-Mehrfach-GPUs. Ort

Bei der Installation von PyTorch am CentOS -System müssen Sie die entsprechende Version sorgfältig auswählen und die folgenden Schlüsselfaktoren berücksichtigen: 1. Kompatibilität der Systemumgebung: Betriebssystem: Es wird empfohlen, CentOS7 oder höher zu verwenden. CUDA und CUDNN: Pytorch -Version und CUDA -Version sind eng miteinander verbunden. Beispielsweise erfordert Pytorch1.9.0 CUDA11.1, während Pytorch2.0.1 CUDA11.3 erfordert. Die Cudnn -Version muss auch mit der CUDA -Version übereinstimmen. Bestimmen Sie vor der Auswahl der Pytorch -Version unbedingt, dass kompatible CUDA- und CUDNN -Versionen installiert wurden. Python -Version: Pytorch Official Branch

Die Installation von CentOS-Installationen erfordert die folgenden Schritte: Installieren von Abhängigkeiten wie Entwicklungstools, PCRE-Devel und OpenSSL-Devel. Laden Sie das Nginx -Quellcode -Paket herunter, entpacken Sie es, kompilieren Sie es und installieren Sie es und geben Sie den Installationspfad als/usr/local/nginx an. Erstellen Sie NGINX -Benutzer und Benutzergruppen und setzen Sie Berechtigungen. Ändern Sie die Konfigurationsdatei nginx.conf und konfigurieren Sie den Hörport und den Domänennamen/die IP -Adresse. Starten Sie den Nginx -Dienst. Häufige Fehler müssen beachtet werden, z. B. Abhängigkeitsprobleme, Portkonflikte und Konfigurationsdateifehler. Die Leistungsoptimierung muss entsprechend der spezifischen Situation angepasst werden, z. B. das Einschalten des Cache und die Anpassung der Anzahl der Arbeitsprozesse.
