Was ist Modellbereitstellung beim maschinellen Lernen?
Die Modellbereitstellung ist der Schlüsselprozess, um das trainierte maschinelle Lernmodell auf die tatsächliche Produktionsumgebung anzuwenden. In dieser Umgebung können Modelle Eingabedaten verarbeiten und entsprechende Ausgaben generieren. Der Zweck besteht darin, es anderen zu erleichtern, das trainierte Modell zu nutzen, um Vorhersagen zu treffen.
Viele Online-Ressourcen konzentrieren sich auf die frühen Phasen des maschinellen Lernlebenszyklus, wie z. B. explorative Datenanalyse (EDA), Modellauswahl und Bewertung. Allerdings wird die Modellbereitstellung oft übersehen, da sie komplexe Prozesse beinhaltet. Für Personen ohne Erfahrung in Softwareentwicklung oder DevOps kann es schwierig sein, den Bereitstellungsprozess zu verstehen. Daher wird die Bereitstellung, obwohl sie ein entscheidender Schritt beim maschinellen Lernen ist, selten ausführlich besprochen.
In diesem Artikel wird das Konzept der Modellbereitstellung vorgestellt, die Architektur des Modells auf hoher Ebene und verschiedene Bereitstellungsmethoden untersucht. Außerdem werden Faktoren erörtert, die Sie bei der Festlegung Ihres Bereitstellungsansatzes berücksichtigen sollten.
Was ist Modellbereitstellung?
Bei der Bereitstellung eines Modells für maschinelles Lernen wird ein trainiertes Modell auf eine reale Produktionsumgebung angewendet. Durch die Bereitstellung kann das Modell Eingabedaten empfangen und Vorhersagen generieren, was es Benutzern, Managern oder anderen Systemen erleichtert, Modelle für maschinelles Lernen für prädiktive Analysen zu verwenden. Der Hauptzweck der Bereitstellung eines Modells besteht darin, sicherzustellen, dass das Modell effektiv ausgeführt werden kann und in praktischen Anwendungen genaue Vorhersageergebnisse liefert.
Die Modellbereitstellung steht in engem Zusammenhang mit der Systemarchitektur für maschinelles Lernen. Die Systemarchitektur für maschinelles Lernen bezieht sich auf die Anordnung und Interaktion von Softwarekomponenten im System, um voreingestellte Ziele zu erreichen.
Kriterien für die Modellbereitstellung
Vor der Bereitstellung eines Modells muss ein Modell für maschinelles Lernen mehrere Kriterien erfüllen, um für die Bereitstellung bereit zu sein:
- Portabilität: Dies bezieht sich auf die Übertragung von Software von einer Maschine oder System zu einem anderen zu einer anderen Maschine oder einem anderen System. Ein tragbares Modell hat eine relativ kurze Reaktionszeit und kann leicht umgeschrieben werden.
- Skalierbarkeit: Dies bezieht sich auf die Größe, auf die das Modell skaliert werden kann. Ein skalierbares Modell ist eines, das seine Leistung ohne Neugestaltung beibehält.
In der tatsächlichen Anwendung werden alle diese Vorgänge in einer Produktionsumgebung ausgeführt. Eine Produktionsumgebung ist die Umgebung, in der Software und andere Produkte tatsächlich ausgeführt und von Endbenutzern verwendet werden.
Systemarchitektur für maschinelles Lernen für die Modellbereitstellung
Auf einer hohen Ebene gibt es vier Hauptteile eines maschinellen Lernsystems:
- Datenschicht: Die Datenschicht bietet Zugriff auf alle für das Modell erforderlichen Datenquellen Zugang.
- Feature-Layer: Der Feature-Layer ist dafür verantwortlich, Feature-Daten auf transparente, skalierbare und nutzbare Weise zu generieren.
- Bewertungsebene: Die Bewertungsebene wandelt Features in Vorhersagen um. Scikit-Learn wird am häufigsten verwendet und ist der Industriestandard für die Bewertung.
- Bewertungsschicht: Die Bewertungsschicht prüft die Äquivalenz zweier Modelle und kann zur Überwachung von Produktionsmodellen verwendet werden. Es wird verwendet, um zu überwachen und zu vergleichen, wie gut Trainingsvorhersagen mit Echtzeit-Verkehrsvorhersagen übereinstimmen.
3 Modellbereitstellungsmethoden, die Sie kennen müssen
Es gibt drei gängige Methoden für die Bereitstellung von ML-Modellen: einmalig, Batch und Echtzeit.
1. Einmalige
Es ist nicht immer notwendig, das maschinelle Lernmodell für die Bereitstellung kontinuierlich zu trainieren. Manchmal wird ein Modell nur einmal oder regelmäßig benötigt. In diesem Fall kann das Modell bei Bedarf einfach ad hoc trainiert und dann in Produktion genommen werden, bis seine Leistung so weit nachlässt, dass eine Reparatur erforderlich ist.
2. Batch
Batch-Training kann kontinuierlich über die neueste Version des Modells verfügen. Hierbei handelt es sich um einen skalierbaren Ansatz, bei dem jeweils eine Teilstichprobe der Daten erfasst wird, sodass nicht bei jeder Aktualisierung der gesamte Datensatz verwendet werden muss. Dies ist ein guter Ansatz, wenn Sie das Modell konsistent verwenden, aber nicht unbedingt Echtzeitvorhersagen benötigen.
3. Echtzeit
In einigen Fällen ist eine Echtzeitvorhersage erforderlich, beispielsweise um festzustellen, ob eine Transaktion betrügerisch ist. Dies kann durch den Einsatz von Online-Modellen für maschinelles Lernen wie der linearen Regression mit stochastischem Gradientenabstieg erreicht werden.
4 Zu berücksichtigende Modellbereitstellungsfaktoren
Bei der Entscheidung, wie ein Modell für maschinelles Lernen bereitgestellt werden soll, sollten viele Faktoren und Einflüsse berücksichtigt werden. Zu diesen Faktoren gehören die folgenden:
- Wie oft Vorhersagen generiert werden und wie dringend die vorhergesagten Ergebnisse benötigt werden.
- Sollten Vorhersagen einzeln oder in Stapeln generiert werden.
- Die Latenzanforderungen des Modells, die Rechenleistung, über die es verfügt, und das erforderliche Service Level Agreement (SLA).
- Die betrieblichen Auswirkungen und Kosten, die für die Bereitstellung und Wartung des Modells erforderlich sind.
Das Verständnis dieser Faktoren kann Ihnen bei der Auswahl zwischen einmaligen, Batch- und Echtzeit-Modellbereitstellungsmethoden helfen.
Das obige ist der detaillierte Inhalt vonWas ist Modellbereitstellung beim maschinellen Lernen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Bei der Bildanmerkung handelt es sich um das Verknüpfen von Beschriftungen oder beschreibenden Informationen mit Bildern, um dem Bildinhalt eine tiefere Bedeutung und Erklärung zu verleihen. Dieser Prozess ist entscheidend für maschinelles Lernen, das dabei hilft, Sehmodelle zu trainieren, um einzelne Elemente in Bildern genauer zu identifizieren. Durch das Hinzufügen von Anmerkungen zu Bildern kann der Computer die Semantik und den Kontext hinter den Bildern verstehen und so den Bildinhalt besser verstehen und analysieren. Die Bildanmerkung hat ein breites Anwendungsspektrum und deckt viele Bereiche ab, z. B. Computer Vision, Verarbeitung natürlicher Sprache und Diagramm-Vision-Modelle. Sie verfügt über ein breites Anwendungsspektrum, z. B. zur Unterstützung von Fahrzeugen bei der Identifizierung von Hindernissen auf der Straße und bei der Erkennung und Diagnose von Krankheiten durch medizinische Bilderkennung. In diesem Artikel werden hauptsächlich einige bessere Open-Source- und kostenlose Bildanmerkungstools empfohlen. 1.Makesens

In den Bereichen maschinelles Lernen und Datenwissenschaft stand die Interpretierbarkeit von Modellen schon immer im Fokus von Forschern und Praktikern. Mit der weit verbreiteten Anwendung komplexer Modelle wie Deep Learning und Ensemble-Methoden ist das Verständnis des Entscheidungsprozesses des Modells besonders wichtig geworden. Explainable AI|XAI trägt dazu bei, Vertrauen in maschinelle Lernmodelle aufzubauen, indem es die Transparenz des Modells erhöht. Eine Verbesserung der Modelltransparenz kann durch Methoden wie den weit verbreiteten Einsatz mehrerer komplexer Modelle sowie der Entscheidungsprozesse zur Erläuterung der Modelle erreicht werden. Zu diesen Methoden gehören die Analyse der Merkmalsbedeutung, die Schätzung des Modellvorhersageintervalls, lokale Interpretierbarkeitsalgorithmen usw. Die Merkmalswichtigkeitsanalyse kann den Entscheidungsprozess des Modells erklären, indem sie den Grad des Einflusses des Modells auf die Eingabemerkmale bewertet. Schätzung des Modellvorhersageintervalls

Laienhaft ausgedrückt ist ein Modell für maschinelles Lernen eine mathematische Funktion, die Eingabedaten einer vorhergesagten Ausgabe zuordnet. Genauer gesagt ist ein Modell für maschinelles Lernen eine mathematische Funktion, die Modellparameter anpasst, indem sie aus Trainingsdaten lernt, um den Fehler zwischen der vorhergesagten Ausgabe und der wahren Bezeichnung zu minimieren. Beim maschinellen Lernen gibt es viele Modelle, z. B. logistische Regressionsmodelle, Entscheidungsbaummodelle, Support-Vektor-Maschinenmodelle usw. Jedes Modell verfügt über seine anwendbaren Datentypen und Problemtypen. Gleichzeitig gibt es viele Gemeinsamkeiten zwischen verschiedenen Modellen oder es gibt einen verborgenen Weg für die Modellentwicklung. Am Beispiel des konnektionistischen Perzeptrons können wir es durch Erhöhen der Anzahl verborgener Schichten des Perzeptrons in ein tiefes neuronales Netzwerk umwandeln. Wenn dem Perzeptron eine Kernelfunktion hinzugefügt wird, kann es in eine SVM umgewandelt werden. Dieses hier

In diesem Artikel wird vorgestellt, wie Überanpassung und Unteranpassung in Modellen für maschinelles Lernen mithilfe von Lernkurven effektiv identifiziert werden können. Unteranpassung und Überanpassung 1. Überanpassung Wenn ein Modell mit den Daten übertrainiert ist, sodass es daraus Rauschen lernt, spricht man von einer Überanpassung des Modells. Ein überangepasstes Modell lernt jedes Beispiel so perfekt, dass es ein unsichtbares/neues Beispiel falsch klassifiziert. Für ein überangepasstes Modell erhalten wir einen perfekten/nahezu perfekten Trainingssatzwert und einen schrecklichen Validierungssatz-/Testwert. Leicht geändert: „Ursache der Überanpassung: Verwenden Sie ein komplexes Modell, um ein einfaches Problem zu lösen und Rauschen aus den Daten zu extrahieren. Weil ein kleiner Datensatz als Trainingssatz möglicherweise nicht die korrekte Darstellung aller Daten darstellt. 2. Unteranpassung Heru.“

In den 1950er Jahren wurde die künstliche Intelligenz (KI) geboren. Damals entdeckten Forscher, dass Maschinen menschenähnliche Aufgaben wie das Denken ausführen können. Später, in den 1960er Jahren, finanzierte das US-Verteidigungsministerium künstliche Intelligenz und richtete Labore für die weitere Entwicklung ein. Forscher finden Anwendungen für künstliche Intelligenz in vielen Bereichen, etwa bei der Erforschung des Weltraums und beim Überleben in extremen Umgebungen. Unter Weltraumforschung versteht man die Erforschung des Universums, das das gesamte Universum außerhalb der Erde umfasst. Der Weltraum wird als extreme Umgebung eingestuft, da sich seine Bedingungen von denen auf der Erde unterscheiden. Um im Weltraum zu überleben, müssen viele Faktoren berücksichtigt und Vorkehrungen getroffen werden. Wissenschaftler und Forscher glauben, dass die Erforschung des Weltraums und das Verständnis des aktuellen Zustands aller Dinge dazu beitragen können, die Funktionsweise des Universums zu verstehen und sich auf mögliche Umweltkrisen vorzubereiten

Zu den häufigsten Herausforderungen, mit denen Algorithmen für maschinelles Lernen in C++ konfrontiert sind, gehören Speicherverwaltung, Multithreading, Leistungsoptimierung und Wartbarkeit. Zu den Lösungen gehören die Verwendung intelligenter Zeiger, moderner Threading-Bibliotheken, SIMD-Anweisungen und Bibliotheken von Drittanbietern sowie die Einhaltung von Codierungsstilrichtlinien und die Verwendung von Automatisierungstools. Praktische Fälle zeigen, wie man die Eigen-Bibliothek nutzt, um lineare Regressionsalgorithmen zu implementieren, den Speicher effektiv zu verwalten und leistungsstarke Matrixoperationen zu nutzen.

Übersetzer |. Rezensiert von Li Rui |. Chonglou Modelle für künstliche Intelligenz (KI) und maschinelles Lernen (ML) werden heutzutage immer komplexer, und die von diesen Modellen erzeugten Ergebnisse sind eine Blackbox, die den Stakeholdern nicht erklärt werden kann. Explainable AI (XAI) zielt darauf ab, dieses Problem zu lösen, indem es Stakeholdern ermöglicht, die Funktionsweise dieser Modelle zu verstehen, sicherzustellen, dass sie verstehen, wie diese Modelle tatsächlich Entscheidungen treffen, und Transparenz in KI-Systemen, Vertrauen und Verantwortlichkeit zur Lösung dieses Problems gewährleistet. In diesem Artikel werden verschiedene Techniken der erklärbaren künstlichen Intelligenz (XAI) untersucht, um ihre zugrunde liegenden Prinzipien zu veranschaulichen. Mehrere Gründe, warum erklärbare KI von entscheidender Bedeutung ist. Vertrauen und Transparenz: Damit KI-Systeme allgemein akzeptiert und vertrauenswürdig sind, müssen Benutzer verstehen, wie Entscheidungen getroffen werden

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist
