


Tipps zum schnellen Erstellen mehrdimensionaler Arrays mit Numpy
Tipps zum schnellen Erstellen mehrdimensionaler Arrays mit Numpy
Numpy ist eine der am häufigsten verwendeten wissenschaftlichen Rechenbibliotheken in Python. Sie stellt effiziente mehrdimensionale Array-Objekte (ndarray) bereit und unterstützt verschiedene Array-Operationen und mathematische Operationen. Bei der Datenanalyse und numerischen Berechnungen ist es häufig erforderlich, mehrdimensionale Arrays zu erstellen und zu bearbeiten. In diesem Artikel werden einige Techniken zum schnellen Erstellen mehrdimensionaler Arrays mit Numpy vorgestellt und spezifische Codebeispiele angehängt.
-
Eindimensionale Arrays erstellen
Numpys eindimensionale Arrays können direkt mithilfe von Listenobjekten erstellt werden. Um beispielsweise ein eindimensionales Array mit den Ganzzahlen 1 bis 5 zu erstellen, können Sie den folgenden Code verwenden:import numpy as np arr = np.array([1, 2, 3, 4, 5]) print(arr)
Nach dem Login kopierenDie Ausgabe lautet: [1 2 3 4 5].
Erstellen eines zweidimensionalen Arrays
Beim Erstellen eines zweidimensionalen Arrays können Sie eine Liste von Listen verwenden, um Daten in Matrixform darzustellen. Um beispielsweise ein zweidimensionales Array mit 3 Zeilen und 3 Spalten zu erstellen, können Sie den folgenden Code verwenden:import numpy as np arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print(arr)
Nach dem Login kopierenDas Ausgabeergebnis lautet:
[[1 2 3] [4 5 6] [7 8 9]]
Nach dem Login kopierenDarüber hinaus können Sie auch einige von Numpy bereitgestellte Funktionen verwenden, um ein zu erstellen zweidimensionales Array einer bestimmten Form. Um beispielsweise eine All-Null-Matrix mit 3 Zeilen und 3 Spalten zu erstellen, können Sie den folgenden Code verwenden:
import numpy as np arr = np.zeros((3, 3)) print(arr)
Nach dem Login kopierenDas Ausgabeergebnis lautet:
[[0. 0. 0.] [0. 0. 0.] [0. 0. 0.]]
Nach dem Login kopierenErstellen mehrdimensionaler Arrays
Numpy unterstützt das Erstellen von Arrays mit beliebigen Dimensionen . Um beispielsweise ein dreidimensionales Array mit 3 Zeilen, 3 Spalten und 3 Tiefen zu erstellen, können Sie den folgenden Code verwenden:import numpy as np arr = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9]], [[10, 11, 12], [13, 14, 15], [16, 17, 18]], [[19, 20, 21], [22, 23, 24], [25, 26, 27]]]) print(arr)
Nach dem Login kopierenDas Ausgabeergebnis lautet:
[[[ 1 2 3] [ 4 5 6] [ 7 8 9]] [[10 11 12] [13 14 15] [16 17 18]] [[19 20 21] [22 23 24] [25 26 27]]]
Nach dem Login kopierenVerwenden Sie die von Numpy bereitgestellte Funktion, um ein Array zu erstellen einer bestimmten Form
In praktischen Anwendungen müssen wir manchmal Arrays mit einer bestimmten Form erstellen. Numpy bietet einige Funktionen zum einfachen Erstellen dieser Arrays. Zum Beispiel:- np.zeros(shape): Erstellt ein Array aller Nullen, shape ist ein Tupelparameter, der die Form darstellt.
- np.ones(shape): Erstellen Sie ein All-One-Array. Die Formparameter sind die gleichen wie oben.
- np.full(Form, Wert): Erstellen Sie ein Array der angegebenen Form, jedes Element hat den gleichen Wert.
- np.eye(N): Erstellen Sie eine Identitätsmatrix mit N Zeilen und N Spalten.
- np.random.random(shape): Erstellt ein zufälliges Array einer bestimmten Form mit Elementen im Bereich von 0 bis 1.
Im Folgenden finden Sie einige Beispiele:
import numpy as np arr_zeros = np.zeros((2, 3)) # 创建一个2行3列的全零数组 print(arr_zeros) arr_ones = np.ones((2, 3)) # 创建一个2行3列的全一数组 print(arr_ones) arr_full = np.full((2, 3), 5) # 创建一个2行3列的数组,每个元素都是5 print(arr_full) arr_eye = np.eye(3) # 创建一个3行3列的单位矩阵 print(arr_eye) arr_random = np.random.random((2, 3)) # 创建一个2行3列的随机数组 print(arr_random)
Nach dem Login kopierenDas Ausgabeergebnis lautet:
[[0. 0. 0.] [0. 0. 0.]] [[1. 1. 1.] [1. 1. 1.]] [[5 5 5] [5 5 5]] [[1. 0. 0.] [0. 1. 0.] [0. 0. 1.]] [[0.34634205 0.24187985 0.32349873] [0.76366044 0.10267694 0.07813336]]
Nach dem Login kopieren
Mit verschiedenen von Numpy bereitgestellten Techniken zum Erstellen mehrdimensionaler Arrays können wir problemlos Arrays mit verschiedenen Formen erstellen und diese im wissenschaftlichen Rechnen und verwenden Daten, die bei der Analyse verwendet werden. Gleichzeitig bietet Numpy auch eine Fülle von Array-Operationsfunktionen und mathematischen Operationsmethoden, mit denen Rechenaufgaben für mehrdimensionale Arrays effizient erledigt werden können. Für Benutzer, die Numpy für wissenschaftliche Berechnungen und Datenanalysen verwenden, ist es sehr wichtig, die Fähigkeiten zur schnellen Erstellung mehrdimensionaler Arrays zu beherrschen.
Das obige ist der detaillierte Inhalt vonTipps zum schnellen Erstellen mehrdimensionaler Arrays mit Numpy. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Dieses Tutorial zeigt, wie man Python verwendet, um das statistische Konzept des Zipf -Gesetzes zu verarbeiten, und zeigt die Effizienz des Lesens und Sortierens großer Textdateien von Python bei der Bearbeitung des Gesetzes. Möglicherweise fragen Sie sich, was der Begriff ZiPF -Verteilung bedeutet. Um diesen Begriff zu verstehen, müssen wir zunächst das Zipf -Gesetz definieren. Mach dir keine Sorgen, ich werde versuchen, die Anweisungen zu vereinfachen. Zipf -Gesetz Das Zipf -Gesetz bedeutet einfach: In einem großen natürlichen Sprachkorpus erscheinen die am häufigsten vorkommenden Wörter ungefähr doppelt so häufig wie die zweiten häufigen Wörter, dreimal wie die dritten häufigen Wörter, viermal wie die vierten häufigen Wörter und so weiter. Schauen wir uns ein Beispiel an. Wenn Sie sich den Brown Corpus in amerikanischem Englisch ansehen, werden Sie feststellen, dass das häufigste Wort "Th ist

In diesem Artikel wird erklärt, wie man schöne Suppe, eine Python -Bibliothek, verwendet, um HTML zu analysieren. Es beschreibt gemeinsame Methoden wie find (), find_all (), select () und get_text () für die Datenextraktion, die Behandlung verschiedener HTML -Strukturen und -Anternativen (SEL)

Der Umgang mit lauten Bildern ist ein häufiges Problem, insbesondere bei Mobiltelefonen oder mit geringen Auflösungskamera-Fotos. In diesem Tutorial wird die Bildfilterungstechniken in Python unter Verwendung von OpenCV untersucht, um dieses Problem anzugehen. Bildfilterung: Ein leistungsfähiges Werkzeug Bildfilter

Python, ein Favorit für Datenwissenschaft und Verarbeitung, bietet ein reichhaltiges Ökosystem für Hochleistungs-Computing. Die parallele Programmierung in Python stellt jedoch einzigartige Herausforderungen dar. Dieses Tutorial untersucht diese Herausforderungen und konzentriert sich auf die globale Interprete

Dieser Artikel vergleicht TensorFlow und Pytorch für Deep Learning. Es beschreibt die beteiligten Schritte: Datenvorbereitung, Modellbildung, Schulung, Bewertung und Bereitstellung. Wichtige Unterschiede zwischen den Frameworks, insbesondere bezüglich des rechnerischen Graps

Dieses Tutorial zeigt, dass eine benutzerdefinierte Pipeline -Datenstruktur in Python 3 erstellt wird, wobei Klassen und Bedienerüberladungen für verbesserte Funktionen genutzt werden. Die Flexibilität der Pipeline liegt in ihrer Fähigkeit, eine Reihe von Funktionen auf einen Datensatz GE anzuwenden

Serialisierung und Deserialisierung von Python-Objekten sind Schlüsselaspekte eines nicht trivialen Programms. Wenn Sie etwas in einer Python -Datei speichern, führen Sie eine Objektserialisierung und Deserialisierung durch, wenn Sie die Konfigurationsdatei lesen oder auf eine HTTP -Anforderung antworten. In gewisser Weise sind Serialisierung und Deserialisierung die langweiligsten Dinge der Welt. Wen kümmert sich um all diese Formate und Protokolle? Sie möchten einige Python -Objekte bestehen oder streamen und sie zu einem späteren Zeitpunkt vollständig abrufen. Dies ist eine großartige Möglichkeit, die Welt auf konzeptioneller Ebene zu sehen. Auf praktischer Ebene können das von Ihnen ausgewählte Serialisierungsschema, Format oder Protokoll jedoch die Geschwindigkeit, Sicherheit, den Status der Wartungsfreiheit und andere Aspekte des Programms bestimmen

Das Statistikmodul von Python bietet leistungsstarke Datenstatistikanalysefunktionen, mit denen wir die allgemeinen Merkmale von Daten wie Biostatistik und Geschäftsanalyse schnell verstehen können. Anstatt Datenpunkte nacheinander zu betrachten, schauen Sie sich nur Statistiken wie Mittelwert oder Varianz an, um Trends und Merkmale in den ursprünglichen Daten zu ermitteln, die möglicherweise ignoriert werden, und vergleichen Sie große Datensätze einfacher und effektiv. In diesem Tutorial wird erläutert, wie der Mittelwert berechnet und den Grad der Dispersion des Datensatzes gemessen wird. Sofern nicht anders angegeben, unterstützen alle Funktionen in diesem Modul die Berechnung der Mittelwert () -Funktion, anstatt einfach den Durchschnitt zu summieren. Es können auch schwimmende Punktzahlen verwendet werden. zufällig importieren Statistiken importieren Aus Fracti
