Bedingte Zusammenführung mit Pandas
Ich habe einen Pandas-Datenrahmen wie unten, der andere Anrufe in eine Region detailliert beschreibt:
commsdate | Bereich | day0 inkrementell | Tag1 inkrementell | Tag2 inkrementell |
---|---|---|---|---|
24.01.01 | Verkauf | 43 | 36 | 29 |
24.01.01 | Service | 85 | 74 | 66 |
24.01.02 | Verkauf | 56 | 42 | 31 |
24.01.02 | Service | 73 | 62 | 49 |
24.01.03 | Verkauf | 48 | 32 | 24 |
24.01.03 | Service | 67 | 58 | 46 |
Ich versuche, die Anzahl der eingegangenen Anrufe nach Datum zu berechnen. Die am 1. Januar eingegangenen Verkaufsanrufe sind also day0_incremental (43) dieses Datums, der 2. Januar ist day0 des 2. Januar plus 1. Januar, Tag1 (36+) 56) und der 3. Januar ist Tag0 des 3. Januar plus Tag1 des 2. Januar, Tag2 des 1. Januar (48+42+29), was den folgenden Datenrahmen ergibt:
Anrufdatum | Verkauf | Service |
---|---|---|
24.01.01 | 43 | 85 |
24.01.02 | 92 | 147 |
24.01.03 | 119 | 195 |
01.04.24 | 63 | 107 |
01.05.24 | 24 | 46 |
Ich habe erfolgreich eine Shell des Datenrahmens für die zweite Tabelle erstellt, ohne Werte unter der Bereichsspalte, weiß aber nicht, was ich als Nächstes tun soll:
df['commsdate'] = pd.to_datetime(df['commsdate'], format='%d/%m/%y') areaunique = df['area'].unique().tolist() from datetime import timedelta calldate = pd.date_range(start=min(df['commsdate']), end=max(df['commsdate'])+timedelta(days=6), freq='d') data = {area: [] for area in areaunique} dfnew = pd.dataframe(data) dfnew['calldate'] = calldate dfnew = dfnew.melt(id_vars=['calldate'], var_name='area') dfnew = dfnew.pivot(index='calldate', columns='area', values='value') dfnew = dfnew.reset_index() dfnew = dfnew[['calldate'] + areaunique]
Ich habe angefangen, eine for-Schleife zu schreiben, bin aber nur so weit gekommen:
for i in range(1,len(areaunique)+1): dfnew.columns(i) =
Richtige Antwort
Du kannst anrufenpivot
、shift
和add
:
df['commsdate'] = pd.to_datetime(df['commsdate'], dayfirst=true) tmp = df.pivot(index='commsdate', columns='area') out = (tmp['day0 incremental'] .add(tmp['day1 incremental'].shift(freq='1d'), fill_value=0) .add(tmp['day2 incremental'].shift(freq='2d'), fill_value=0) .reset_index().rename_axis(columns=none) )
Alternativ verwenden Sie von dayx …
字符串中提取的数字以编程方式使用 functools.reduce
:
from functools import reduce import re reg = re.compile(r'day(\d+)') df['commsdate'] = pd.to_datetime(df['commsdate'], dayfirst=true) tmp = df.pivot(index='commsdate', columns='area') out = reduce(lambda a,b: a.add(b, fill_value=0), (tmp[d].shift(freq=f'{reg.search(d).group(1)}d') for d in tmp.columns.get_level_values(0).unique()) ).reset_index().rename_axis(columns=none)
Ausgabe:
CommsDate Sales Service 0 2024-01-01 43.0 85.0 1 2024-01-02 92.0 147.0 2 2024-01-03 119.0 195.0 3 2024-01-04 63.0 107.0 4 2024-01-05 24.0 46.0
Das obige ist der detaillierte Inhalt vonBedingte Zusammenführung mit Pandas. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Bei der Verwendung von Pythons Pandas -Bibliothek ist das Kopieren von ganzen Spalten zwischen zwei Datenrahmen mit unterschiedlichen Strukturen ein häufiges Problem. Angenommen, wir haben zwei Daten ...

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

Regelmäßige Ausdrücke sind leistungsstarke Tools für Musteranpassung und Textmanipulation in der Programmierung, wodurch die Effizienz bei der Textverarbeitung in verschiedenen Anwendungen verbessert wird.

Wie hört Uvicorn kontinuierlich auf HTTP -Anfragen an? Uvicorn ist ein leichter Webserver, der auf ASGI basiert. Eine seiner Kernfunktionen ist es, auf HTTP -Anfragen zu hören und weiterzumachen ...

In dem Artikel werden beliebte Python-Bibliotheken wie Numpy, Pandas, Matplotlib, Scikit-Learn, TensorFlow, Django, Flask und Anfragen erörtert, die ihre Verwendung in wissenschaftlichen Computing, Datenanalyse, Visualisierung, maschinellem Lernen, Webentwicklung und h beschreiben

Wie erstellt in Python ein Objekt dynamisch über eine Zeichenfolge und ruft seine Methoden auf? Dies ist eine häufige Programmieranforderung, insbesondere wenn sie konfiguriert oder ausgeführt werden muss ...
