Heim > Backend-Entwicklung > Python-Tutorial > more_itertools kann „cached_property' nicht aus functools in Python 3.6 importieren

more_itertools kann „cached_property' nicht aus functools in Python 3.6 importieren

WBOY
Freigeben: 2024-02-22 13:40:18
nach vorne
671 Leute haben es durchsucht

more_itertools 无法在 Python 3.6 中从 functools 导入cached_property

Frageninhalt

Ich habe versucht, grade_analysis.py vom Terminal aus in Visual Studio-Code mit dem folgenden Befehl auszuführen:

~/documents/school/ml4t_2023fall/assess_portfolio$ pythonpath=../:. python grade_analysis.py Gemäß den Anweisungen zur Unterrichtsgestaltung

Wenn ich jedoch den Befehl ausführe, scheint grade_analysis.py nicht in der Lage zu sein, eine höhere Ebene zu erreichen und die Informationen aus der Datei grading.grading.py abzurufen.

Verwende ich diesen Befehl falsch oder übersehe ich etwas?

Dies ist die Fehlermeldung, die ich erhalte:

2023fall/assess_portfolio$ pythonpath=../:. python grade_analysis.py
traceback (most recent call last):
  file "grade_analysis.py", line 20, in <module>
    import pytest                                                                                                                                                         
  file "/home/clopez/miniconda3/envs/ml4t/lib/python3.6/site-packages/pytest.py", line 34, in <module>
    from _pytest.python_api import approx
  file "/home/clopez/miniconda3/envs/ml4t/lib/python3.6/site-packages/_pytest/python_api.py", line 13, in <module>
    from more_itertools.more import always_iterable
  file "/home/clopez/miniconda3/envs/ml4t/lib/python3.6/site-packages/more_itertools/__init__.py", line 3, in <module>
    from .more import *  # noqa
  file "/home/clopez/miniconda3/envs/ml4t/lib/python3.6/site-packages/more_itertools/more.py", line 5, in <module>
    from functools import cached_property, partial, reduce, wraps
importerror: cannot import name 'cached_property'
Nach dem Login kopieren

Anweisungen zur Umgebungseinrichtung

Conda-Umgebung yml

name: ml4t
channels:
- conda-forge
- defaults
dependencies:
- python=3.6
- cycler=0.10.0
- kiwisolver=1.1.0
- matplotlib=3.0.3
- numpy=1.16.3
- pandas=0.24.2
- pyparsing=2.4.0
- python-dateutil=2.8.0
- pytz=2019.1
- scipy=1.2.1
- seaborn=0.9.0
- six=1.12.0
- joblib=0.13.2
- pytest=5.0
- pytest-json=0.4.0
- future=0.17.1
- pprofile=2.0.2
- pip
- pip:
  - jsons==0.8.8
  - gradescope-utils
  - subprocess32
Nach dem Login kopieren

Notenanalyse.py

"""MC1-P1: Analyze a portfolio - grading script.                                                                                              
                                                                                              
Usage:                                                                                                
- Switch to a student feedback directory first (will write "points.txt" and "comments.txt" in pwd).                                                                                               
- Run this script with both ml4t/ and student solution in PYTHONPATH, e.g.:                                                                                               
    PYTHONPATH=ml4t:MC1-P1/jdoe7 python ml4t/mc1_p1_grading/grade_analysis.py                                                                                             
                                                                                              
Copyright 2017, Georgia Tech Research Corporation                                                                                             
Atlanta, Georgia 30332-0415                                                                                               
All Rights Reserved                                                                                               
"""                                                                                               
                                                                                              
import datetime                                                                                               
import os                                                                                             
import sys                                                                                                
import traceback as tb                                                                                                
from collections import OrderedDict, namedtuple                                                                                               
                                                                                              
import pandas as pd                                                                                               
import pytest                                                                                             
from grading.grading import (                                                                                             
    GradeResult,                                                                                              
    IncorrectOutput,                                                                                              
    grader,                                                                                               
    run_with_timeout,                                                                                             
)                                                                                             
from util import get_data                                                                                             
                                                                                              
# Student code                                                                                                
# Spring '16 renamed package to just "analysis" (BPH)                                                                                             
main_code = "analysis"  # module name to import                                                                                               
                                                                                              
# Test cases                                                                                              
# Spring '16 test cases only check sharp ratio, avg daily ret, and cum_ret (BPH)                                                                                              
PortfolioTestCase = namedtuple(                                                                                               
    "PortfolioTestCase", ["inputs", "outputs", "description"]                                                                                             
)                                                                                             
portfolio_test_cases = [                                                                                              
    PortfolioTestCase(                                                                                                
        inputs=dict(                                                                                              
            start_date="2010-01-01",                                                                                              
            end_date="2010-12-31",                                                                                                
            symbol_allocs=OrderedDict(                                                                                                
                [("GOOG", 0.2), ("AAPL", 0.3), ("GLD", 0.4), ("XOM", 0.1)]                                                                                                
            ),                                                                                                
            start_val=1000000,                                                                                                
        ),                                                                                                
        outputs=dict(                                                                                             
            cum_ret=0.255646784534,                                                                                               
            avg_daily_ret=0.000957366234238,                                                                                              
            sharpe_ratio=1.51819243641,                                                                                               
        ),                                                                                                
        description="Wiki example 1",                                                                                             
    ),                                                                                                
    PortfolioTestCase(                                                                                                
        inputs=dict(                                                                                              
            start_date="2010-01-01",                                                                                              
            end_date="2010-12-31",                                                                                                
            symbol_allocs=OrderedDict(                                                                                                
                [("AXP", 0.0), ("HPQ", 0.0), ("IBM", 0.0), ("HNZ", 1.0)]                                                                                              
            ),                                                                                                
            start_val=1000000,                                                                                                
        ),                                                                                                
        outputs=dict(                                                                                             
            cum_ret=0.198105963655,                                                                                               
            avg_daily_ret=0.000763106152672,                                                                                              
            sharpe_ratio=1.30798398744,                                                                                               
        ),                                                                                                
        description="Wiki example 2",                                                                                             
    ),                                                                                                
    PortfolioTestCase(                                                                                                
        inputs=dict(                                                                                              
            start_date="2010-06-01",                                                                                              
            end_date="2010-12-31",                                                                                                
            symbol_allocs=OrderedDict(                                                                                                
                [("GOOG", 0.2), ("AAPL", 0.3), ("GLD", 0.4), ("XOM", 0.1)]                                                                                                
            ),                                                                                                
            start_val=1000000,                                                                                                
        ),                                                                                                
        outputs=dict(                                                                                             
            cum_ret=0.205113938792,                                                                                               
            avg_daily_ret=0.00129586924366,                                                                                               
            sharpe_ratio=2.21259766672,                                                                                               
        ),                                                                                                
        description="Wiki example 3: Six month range",                                                                                                
    ),                                                                                                
    PortfolioTestCase(                                                                                                
        inputs=dict(                                                                                              
            start_date="2010-01-01",                                                                                              
            end_date="2013-05-31",                                                                                                
            symbol_allocs=OrderedDict(                                                                                                
                [("AXP", 0.3), ("HPQ", 0.5), ("IBM", 0.1), ("GOOG", 0.1)]                                                                                             
            ),                                                                                                
            start_val=1000000,                                                                                                
        ),                                                                                                
        outputs=dict(                                                                                             
            cum_ret=-0.110888530433,                                                                                              
            avg_daily_ret=-6.50814806831e-05,                                                                                             
            sharpe_ratio=-0.0704694718385,                                                                                                
        ),                                                                                                
        description="Normalization check",                                                                                                
    ),                                                                                                
    PortfolioTestCase(                                                                                                
        inputs=dict(                                                                                              
            start_date="2010-01-01",                                                                                              
            end_date="2010-01-31",                                                                                                
            symbol_allocs=OrderedDict(                                                                                                
                [("AXP", 0.9), ("HPQ", 0.0), ("IBM", 0.1), ("GOOG", 0.0)]                                                                                             
            ),                                                                                                
            start_val=1000000,                                                                                                
        ),                                                                                                
        outputs=dict(                                                                                             
            cum_ret=-0.0758725033871,                                                                                             
            avg_daily_ret=-0.00411578300489,                                                                                              
            sharpe_ratio=-2.84503813366,                                                                                              
        ),                                                                                                
        description="One month range",                                                                                                
    ),                                                                                                
    PortfolioTestCase(                                                                                                
        inputs=dict(                                                                                              
            start_date="2011-01-01",                                                                                              
            end_date="2011-12-31",                                                                                                
            symbol_allocs=OrderedDict(                                                                                                
                [("WFR", 0.25), ("ANR", 0.25), ("MWW", 0.25), ("FSLR", 0.25)]                                                                                             
            ),                                                                                                
            start_val=1000000,                                                                                                
        ),                                                                                                
        outputs=dict(                                                                                             
            cum_ret=-0.686004563165,                                                                                              
            avg_daily_ret=-0.00405018240566,                                                                                              
            sharpe_ratio=-1.93664660013,                                                                                              
        ),                                                                                                
        description="Low Sharpe ratio",                                                                                               
    ),                                                                                                
    PortfolioTestCase(                                                                                                
        inputs=dict(                                                                                              
            start_date="2010-01-01",                                                                                              
            end_date="2010-12-31",                                                                                                
            symbol_allocs=OrderedDict(                                                                                                
                [("AXP", 0.0), ("HPQ", 1.0), ("IBM", 0.0), ("HNZ", 0.0)]                                                                                              
            ),                                                                                                
            start_val=1000000,                                                                                                
        ),                                                                                                
        outputs=dict(                                                                                             
            cum_ret=-0.191620333598,                                                                                              
            avg_daily_ret=-0.000718040989619,                                                                                             
            sharpe_ratio=-0.71237182415,                                                                                              
        ),                                                                                                
        description="All your eggs in one basket",                                                                                                
    ),                                                                                                
    PortfolioTestCase(                                                                                                
        inputs=dict(                                                                                              
            start_date="2006-01-03",                                                                                              
            end_date="2008-01-02",                                                                                                
            symbol_allocs=OrderedDict(                                                                                                
                [("MMM", 0.0), ("MO", 0.9), ("MSFT", 0.1), ("INTC", 0.0)]                                                                                             
            ),                                                                                                
            start_val=1000000,                                                                                                
        ),                                                                                                
        outputs=dict(                                                                                             
            cum_ret=0.43732715979,                                                                                                
            avg_daily_ret=0.00076948918955,                                                                                               
            sharpe_ratio=1.26449481371,                                                                                               
        ),                                                                                                
        description="Two year range",                                                                                             
    ),                                                                                                
]                                                                                             
abs_margins = dict(                                                                                               
    cum_ret=0.001, avg_daily_ret=0.00001, sharpe_ratio=0.001                                                                                              
)  # absolute margin of error for each output                                                                                             
points_per_output = dict(                                                                                             
    cum_ret=2.5, avg_daily_ret=2.5, sharpe_ratio=5.0                                                                                              
)  # points for each output, for partial credit                                                                                               
points_per_test_case = sum(points_per_output.values())                                                                                                
max_seconds_per_call = 5                                                                                              
                                                                                              
# Grading parameters (picked up by module-level grading fixtures)                                                                                             
max_points = float(len(portfolio_test_cases) * points_per_test_case)                                                                                              
html_pre_block = (                                                                                                
    True  # surround comments with HTML <pre class="brush:php;toolbar:false"> tag (for T-Square comments field)                                                                                               
)                                                                                             
                                                                                              
# Test functon(s)                                                                                             
@pytest.mark.parametrize("inputs,outputs,description", portfolio_test_cases)                                                                                              
def test_analysis(inputs, outputs, description, grader):                                                                                              
    """Test get_portfolio_value() and get_portfolio_stats() return correct values.                                                                                                
                                                                                              
    Requires test inputs, expected outputs, description, and a grader fixture.                                                                                                
    """                                                                                               
                                                                                              
    points_earned = 0.0  # initialize points for this test case                                                                                               
    try:                                                                                              
        # Try to import student code (only once)                                                                                              
        if not main_code in globals():                                                                                                
            import importlib                                                                                              
                                                                                              
            # * Import module                                                                                             
            mod = importlib.import_module(main_code)                                                                                              
            globals()[main_code] = mod                                                                                                
                                                                                              
        # Unpack test case                                                                                                
        start_date_str = inputs["start_date"].split("-")                                                                                              
        start_date = datetime.datetime(                                                                                               
            int(start_date_str[0]),                                                                                               
            int(start_date_str[1]),                                                                                               
            int(start_date_str[2]),                                                                                               
        )                                                                                             
        end_date_str = inputs["end_date"].split("-")                                                                                              
        end_date = datetime.datetime(                                                                                             
            int(end_date_str[0]), int(end_date_str[1]), int(end_date_str[2])                                                                                              
        )                                                                                             
        symbols = list(                                                                                               
            inputs["symbol_allocs"].keys()                                                                                                
        )  # e.g.: ['GOOG', 'AAPL', 'GLD', 'XOM']                                                                                             
        allocs = list(                                                                                                
            inputs["symbol_allocs"].values()                                                                                              
        )  # e.g.: [0.2, 0.3, 0.4, 0.1]                                                                                               
        start_val = inputs["start_val"]                                                                                               
        risk_free_rate = inputs.get("risk_free_rate", 0.0)                                                                                                
                                                                                              
        # the wonky unpacking here is so that we only pull out the values we say we'll test.                                                                                              
        def timeoutwrapper_analysis():                                                                                                
            student_rv = analysis.assess_portfolio(                                                                                               
                sd=start_date,                                                                                                
                ed=end_date,                                                                                              
                syms=symbols,                                                                                             
                allocs=allocs,                                                                                                
                sv=start_val,                                                                                             
                rfr=risk_free_rate,                                                                                               
                sf=252.0,                                                                                             
                gen_plot=False,                                                                                               
            )                                                                                             
            return student_rv                                                                                             
                                                                                              
        result = run_with_timeout(                                                                                                
            timeoutwrapper_analysis, max_seconds_per_call, (), {}                                                                                             
        )                                                                                             
        student_cr = result[0]                                                                                                
        student_adr = result[1]                                                                                               
        student_sr = result[3]                                                                                                
        port_stats = OrderedDict(                                                                                             
            [                                                                                             
                ("cum_ret", student_cr),                                                                                              
                ("avg_daily_ret", student_adr),                                                                                               
                ("sharpe_ratio", student_sr),                                                                                             
            ]                                                                                             
        )                                                                                             
        # Verify against expected outputs and assign points                                                                                               
        incorrect = False                                                                                             
        msgs = []                                                                                             
        for key, value in port_stats.items():                                                                                             
            if abs(value - outputs[key]) > abs_margins[key]:                                                                                              
                incorrect = True                                                                                              
                msgs.append(                                                                                              
                    "    {}: {} (expected: {})".format(                                                                                               
                        key, value, outputs[key]                                                                                              
                    )                                                                                             
                )                                                                                             
            else:                                                                                             
                points_earned += points_per_output[key]  # partial credit                                                                                             
                                                                                              
        if incorrect:                                                                                             
            inputs_str = (                                                                                                
                "    start_date: {}\n"                                                                                                
                "    end_date: {}\n"                                                                                              
                "    symbols: {}\n"                                                                                               
                "    allocs: {}\n"                                                                                                
                "    start_val: {}".format(                                                                                               
                    start_date, end_date, symbols, allocs, start_val                                                                                              
                )                                                                                             
            )                                                                                             
            raise IncorrectOutput(                                                                                                
                "One or more stats were incorrect.\n  Inputs:\n{}\n  Wrong"                                                                                               
                " values:\n{}".format(inputs_str, "\n".join(msgs))                                                                                                
            )                                                                                             
    except Exception as e:                                                                                                
        # Test result: failed                                                                                             
        msg = "Test case description: {}\n".format(description)                                                                                               
                                                                                              
        # Generate a filtered stacktrace, only showing erroneous lines in student file(s)                                                                                             
        tb_list = tb.extract_tb(sys.exc_info()[2])                                                                                                
        for i in range(len(tb_list)):                                                                                             
            row = tb_list[i]                                                                                              
            tb_list[i] = (                                                                                                
                os.path.basename(row[0]),                                                                                             
                row[1],                                                                                               
                row[2],                                                                                               
                row[3],                                                                                               
            )  # show only filename instead of long absolute path                                                                                             
        tb_list = [row for row in tb_list if row[0] == "analysis.py"]                                                                                             
        if tb_list:                                                                                               
            msg += "Traceback:\n"                                                                                             
            msg += "".join(tb.format_list(tb_list))  # contains newlines                                                                                              
        msg += "{}: {}".format(e.__class__.__name__, str(e))                                                                                              
                                                                                              
        # Report failure result to grader, with stacktrace                                                                                                
        grader.add_result(                                                                                                
            GradeResult(outcome="failed", points=points_earned, msg=msg)                                                                                              
        )                                                                                             
        raise                                                                                             
    else:                                                                                             
        # Test result: passed (no exceptions)                                                                                             
        grader.add_result(                                                                                                
            GradeResult(outcome="passed", points=points_earned, msg=None)                                                                                             
        )                                                                                             
                                                                                              
                                                                                              
if __name__ == "__main__":                                                                                                
    pytest.main(["-s", __file__])
Nach dem Login kopieren

Ich habe die Conda-Umgebung aktiviert und die Dateien so eingerichtet, dass sie auf die Datei util.py und die Datei grading.py zugreifen kann.

Ich hoffe, dass die Datei „analysis.py“ nach dem Ausführen des Befehls mit „grade_analysis.py“ bewertet wird.


Richtige Antwort


Aus diesem Grund ist die Verwendung von Conda-Lock zum Sperren von Dateien (oder Containerisieren) für die langfristige Reproduzierbarkeit besser als die Verwendung von Yaml. Zusätzliche Abhängigkeiten (z. B. der Inhalt von more-itertools)在 yaml 中不受限制,并且其他包的依赖项可能没有适当的上限。在这种情况下,op 最终得到了 more_itertools 模块的一个版本,该模块引用了后来才添加到 functools.

Die Halbierung wird von more_itertools v10 开始的有问题的引用(对 cached_property angezeigt, daher sollte das Festlegen einer Obergrenze ausreichen:

name: ml4t
channels:
  - conda-forge
  - defaults
dependencies:
  - python=3.6
  - cycler=0.10.0
  - kiwisolver=1.1.0
  - matplotlib=3.0.3
  - more-itertools<10  # <- prevent v10+
  - numpy=1.16.3
  - pandas=0.24.2
  - pyparsing=2.4.0
  - python-dateutil=2.8.0
  - pytz=2019.1
  - scipy=1.2.1
  - seaborn=0.9.0
  - six=1.12.0
  - joblib=0.13.2
  - pytest=5.0
  - pytest-json=0.4.0
  - future=0.17.1
  - pprofile=2.0.2
  - pip
  - pip:
    - jsons==0.8.8
    - gradescope-utils
    - subprocess32

Nach dem Login kopieren

Verwenden Sie dieses Yaml und testen Sie, ob der Import, der den Fehler verursacht hat, jetzt funktioniert:

$ python -c "from more_itertools.more import always_iterable"
$ echo $?
0
Nach dem Login kopieren

Das obige ist der detaillierte Inhalt vonmore_itertools kann „cached_property' nicht aus functools in Python 3.6 importieren. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Quelle:stackoverflow.com
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage