Python Machine Learning Guide: Von Null-Grundlagen bis zum Master-Level beginnt Ihr KI-Traum hier

WBOY
Freigeben: 2024-02-23 17:20:38
nach vorne
659 Leute haben es durchsucht

Python 机器学习指南:从零基础到大师级,你的 AI 梦想从此起航

Kapitel 1: Python-Grundlagen

Bevor Sie mit dem maschinellen Lernen beginnen, müssen Sie sich einige Python-Grundkenntnisse aneignen. Dieses Kapitel behandelt die grundlegende Syntax, Datentypen, Kontrollstrukturen und Funktionen von Python. Wenn Sie bereits mit Python vertraut sind, können Sie dieses Kapitel überspringen.

# 注释

# 变量

x = 5
y = "Hello, world!"

# 数据类型

print(type(x))# <class "int">
print(type(y))# <class "str">

# 控制结构

if x > 0:
print("x is positive.")
else:
print("x is not positive.")

# 函数

def my_function(x):
return x * 2

print(my_function(5))# 10
Nach dem Login kopieren

Kapitel 2: Grundlagen des maschinellen Lernens

In diesem Kapitel werden die Grundkenntnisse des maschinellen Lernens vorgestellt, einschließlich der Definition, Klassifizierung, Bewertungsmethoden des maschinellen Lernens usw. Sie erfahren, was maschinelles Lernen leisten kann und wie Sie den richtigen Algorithmus für maschinelles Lernen auswählen.

# 导入必要的库

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

# 加载数据

data = pd.read_csv("data.csv")

# 划分训练集和测试集

X = data.drop("target", axis=1)# 特征数据
y = data["target"]# 标签数据

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# 训练模型

model = LinearRegression()
model.fit(X_train, y_train)

# 评估模型

score = model.score(X_test, y_test)
print("准确率:", score)

# 预测

predictions = model.predict(X_test)
Nach dem Login kopieren
Kapitel 3: Häufig verwendete Algorithmen für maschinelles Lernen

In diesem Kapitel werden einige häufig verwendete Algorithmen für maschinelles Lernen vorgestellt, darunter lineare Regression, logistische Regression, Entscheidungsbäume, Support-Vektor-Maschinen, Zufallswälder usw. Sie lernen die Prinzipien und Eigenschaften jedes Algorithmus kennen und erfahren, wie Sie diese Algorithmen zur Lösung praktischer Probleme verwenden können.

# 导入必要的库

from sklearn.linear_model import LinearRegression
from sklearn.linear_model import LoGISticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier

# 加载数据

data = pd.read_csv("data.csv")

# 划分训练集和测试集

X = data.drop("target", axis=1)# 特征数据
y = data["target"]# 标签数据

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# 训练模型

models = [
LinearRegression(),
LogisticRegression(),
DecisionTreeClassifier(),
SVC(),
RandomForestClassifier()
]

for model in models:
model.fit(X_train, y_train)

# 评估模型

score = model.score(X_test, y_test)
print(model.__class__.__name__, "准确率:", score)
Nach dem Login kopieren

Kapitel 4: Deep Learning

In diesem Kapitel werden die Grundkenntnisse des „Deep Learning“ vorgestellt, einschließlich der Struktur und Prinzipien des „neuronalen Netzwerks“, häufig verwendeter Aktivierungsfunktionen, Verlustfunktionen und „Optimierungsalgorithmen“ usw. Sie erfahren, was Deep Learning bewirken kann und wie Sie Deep Learning nutzen können, um reale Probleme zu lösen.

# 导入必要的库

import Tensorflow as tf

# 定义神经网络模型

model = tf.keras.Sequential([
tf.keras.layers.Dense(100, activation="relu"),
tf.keras.layers.Dense(10, activation="softmax")
])

# 编译模型

model.compile(optimizer="adam", loss="sparse_cateGorical_crossentropy", metrics=["accuracy"])

# 训练模型

model.fit(X_train, y_train, epochs=10)

# 评估模型

score = model.evaluate(X_test, y_test)
print("准确率:", score[1])

# 预测

predictions = model.predict(X_test)
Nach dem Login kopieren

Das obige ist der detaillierte Inhalt vonPython Machine Learning Guide: Von Null-Grundlagen bis zum Master-Level beginnt Ihr KI-Traum hier. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Quelle:lsjlt.com
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage
Über uns Haftungsausschluss Sitemap
Chinesische PHP-Website:Online-PHP-Schulung für das Gemeinwohl,Helfen Sie PHP-Lernenden, sich schnell weiterzuentwickeln!