Heim Backend-Entwicklung Python-Tutorial Python Machine Learning Guide: Von Null-Grundlagen bis zum Master-Level beginnt Ihr KI-Traum hier

Python Machine Learning Guide: Von Null-Grundlagen bis zum Master-Level beginnt Ihr KI-Traum hier

Feb 23, 2024 pm 05:20 PM

Python 机器学习指南:从零基础到大师级,你的 AI 梦想从此起航

Kapitel 1: Python-Grundlagen

Bevor Sie mit dem maschinellen Lernen beginnen, müssen Sie sich einige Python-Grundkenntnisse aneignen. Dieses Kapitel behandelt die grundlegende Syntax, Datentypen, Kontrollstrukturen und Funktionen von Python. Wenn Sie bereits mit Python vertraut sind, können Sie dieses Kapitel überspringen.

# 注释

# 变量

x = 5
y = "Hello, world!"

# 数据类型

print(type(x))# <class "int">
print(type(y))# <class "str">

# 控制结构

if x > 0:
print("x is positive.")
else:
print("x is not positive.")

# 函数

def my_function(x):
return x * 2

print(my_function(5))# 10
Nach dem Login kopieren

Kapitel 2: Grundlagen des maschinellen Lernens

In diesem Kapitel werden die Grundkenntnisse des maschinellen Lernens vorgestellt, einschließlich der Definition, Klassifizierung, Bewertungsmethoden des maschinellen Lernens usw. Sie erfahren, was maschinelles Lernen leisten kann und wie Sie den richtigen Algorithmus für maschinelles Lernen auswählen.

# 导入必要的库

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

# 加载数据

data = pd.read_csv("data.csv")

# 划分训练集和测试集

X = data.drop("target", axis=1)# 特征数据
y = data["target"]# 标签数据

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# 训练模型

model = LinearRegression()
model.fit(X_train, y_train)

# 评估模型

score = model.score(X_test, y_test)
print("准确率:", score)

# 预测

predictions = model.predict(X_test)
Nach dem Login kopieren
Kapitel 3: Häufig verwendete Algorithmen für maschinelles Lernen

In diesem Kapitel werden einige häufig verwendete Algorithmen für maschinelles Lernen vorgestellt, darunter lineare Regression, logistische Regression, Entscheidungsbäume, Support-Vektor-Maschinen, Zufallswälder usw. Sie lernen die Prinzipien und Eigenschaften jedes Algorithmus kennen und erfahren, wie Sie diese Algorithmen zur Lösung praktischer Probleme verwenden können.

# 导入必要的库

from sklearn.linear_model import LinearRegression
from sklearn.linear_model import LoGISticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier

# 加载数据

data = pd.read_csv("data.csv")

# 划分训练集和测试集

X = data.drop("target", axis=1)# 特征数据
y = data["target"]# 标签数据

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# 训练模型

models = [
LinearRegression(),
LogisticRegression(),
DecisionTreeClassifier(),
SVC(),
RandomForestClassifier()
]

for model in models:
model.fit(X_train, y_train)

# 评估模型

score = model.score(X_test, y_test)
print(model.__class__.__name__, "准确率:", score)
Nach dem Login kopieren

Kapitel 4: Deep Learning

In diesem Kapitel werden die Grundkenntnisse des „Deep Learning“ vorgestellt, einschließlich der Struktur und Prinzipien des „neuronalen Netzwerks“, häufig verwendeter Aktivierungsfunktionen, Verlustfunktionen und „Optimierungsalgorithmen“ usw. Sie erfahren, was Deep Learning bewirken kann und wie Sie Deep Learning nutzen können, um reale Probleme zu lösen.

# 导入必要的库

import Tensorflow as tf

# 定义神经网络模型

model = tf.keras.Sequential([
tf.keras.layers.Dense(100, activation="relu"),
tf.keras.layers.Dense(10, activation="softmax")
])

# 编译模型

model.compile(optimizer="adam", loss="sparse_cateGorical_crossentropy", metrics=["accuracy"])

# 训练模型

model.fit(X_train, y_train, epochs=10)

# 评估模型

score = model.evaluate(X_test, y_test)
print("准确率:", score[1])

# 预测

predictions = model.predict(X_test)
Nach dem Login kopieren

Das obige ist der detaillierte Inhalt vonPython Machine Learning Guide: Von Null-Grundlagen bis zum Master-Level beginnt Ihr KI-Traum hier. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Wie löste ich das Problem der Berechtigungen beim Betrachten der Python -Version in Linux Terminal? Wie löste ich das Problem der Berechtigungen beim Betrachten der Python -Version in Linux Terminal? Apr 01, 2025 pm 05:09 PM

Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

Wie kann ich die gesamte Spalte eines Datenrahmens effizient in einen anderen Datenrahmen mit verschiedenen Strukturen in Python kopieren? Wie kann ich die gesamte Spalte eines Datenrahmens effizient in einen anderen Datenrahmen mit verschiedenen Strukturen in Python kopieren? Apr 01, 2025 pm 11:15 PM

Bei der Verwendung von Pythons Pandas -Bibliothek ist das Kopieren von ganzen Spalten zwischen zwei Datenrahmen mit unterschiedlichen Strukturen ein häufiges Problem. Angenommen, wir haben zwei Daten ...

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer-Anfänger-Programmierbasis in Projekt- und problemorientierten Methoden? Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer-Anfänger-Programmierbasis in Projekt- und problemorientierten Methoden? Apr 02, 2025 am 07:18 AM

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Wie erstelle ich dynamisch ein Objekt über eine Zeichenfolge und rufe seine Methoden in Python auf? Wie erstelle ich dynamisch ein Objekt über eine Zeichenfolge und rufe seine Methoden in Python auf? Apr 01, 2025 pm 11:18 PM

Wie erstellt in Python ein Objekt dynamisch über eine Zeichenfolge und ruft seine Methoden auf? Dies ist eine häufige Programmieranforderung, insbesondere wenn sie konfiguriert oder ausgeführt werden muss ...

Wie hört Uvicorn kontinuierlich auf HTTP -Anfragen ohne Serving_forver () an? Wie hört Uvicorn kontinuierlich auf HTTP -Anfragen ohne Serving_forver () an? Apr 01, 2025 pm 10:51 PM

Wie hört Uvicorn kontinuierlich auf HTTP -Anfragen an? Uvicorn ist ein leichter Webserver, der auf ASGI basiert. Eine seiner Kernfunktionen ist es, auf HTTP -Anfragen zu hören und weiterzumachen ...

Was sind einige beliebte Python -Bibliotheken und ihre Verwendung? Was sind einige beliebte Python -Bibliotheken und ihre Verwendung? Mar 21, 2025 pm 06:46 PM

In dem Artikel werden beliebte Python-Bibliotheken wie Numpy, Pandas, Matplotlib, Scikit-Learn, TensorFlow, Django, Flask und Anfragen erörtert, die ihre Verwendung in wissenschaftlichen Computing, Datenanalyse, Visualisierung, maschinellem Lernen, Webentwicklung und h beschreiben

Wie kann man vom Browser vermeiden, wenn man überall Fiddler für das Lesen des Menschen in der Mitte verwendet? Wie kann man vom Browser vermeiden, wenn man überall Fiddler für das Lesen des Menschen in der Mitte verwendet? Apr 02, 2025 am 07:15 AM

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

See all articles