Inhaltsverzeichnis
Textversion des Kurses „LLM-Wortsegmentierung“
Netizens sind online, um Ratschläge zu geben
Heim Technologie-Peripheriegeräte KI Voller nützlicher Informationen! Die erste Textversion des zweistündigen KI-Kurses von Master Karpathy, ein neuer Workflow wandelt Videos automatisch in Artikel um

Voller nützlicher Informationen! Die erste Textversion des zweistündigen KI-Kurses von Master Karpathy, ein neuer Workflow wandelt Videos automatisch in Artikel um

Feb 26, 2024 am 11:00 AM
ai gpt

Vor einiger Zeit hat der Online-KI-Kurs von KI-Meister Karpathy 150.000 Aufrufe im gesamten Netzwerk erhalten.

Zu dieser Zeit sagten einige Internetnutzer, dass der Wert dieses zweistündigen Kurses dem Wert von 4 Jahren College entsprach.

Voller nützlicher Informationen! Die erste Textversion des zweistündigen KI-Kurses von Master Karpathy, ein neuer Workflow wandelt Videos automatisch in Artikel um

Erst in den letzten Tagen hatte Karpathy eine neue Idee:

Konvertieren Sie die 2 Stunden und 13 Minuten des Videoinhalts „Building a GPT Tokenizer from Scratch“ in ein Buchkapitel oder einen Blog Die Form des Artikels konzentriert sich auf das Thema „Wortsegmentierung“.

Die spezifischen Schritte sind wie folgt:

- Fügen Sie dem Video Untertitel oder Erzähltext hinzu.

- Schneiden Sie das Video in mehrere Absätze mit passenden Bildern und Texten.

- Nutzen Sie die Prompt-Engineering-Technologie großer Sprachmodelle, um Absatz für Absatz zu übersetzen.

– Geben Sie die Ergebnisse als Webseite mit Links zu Teilen des Originalvideos aus.

Im weiteren Sinne kann ein solcher Workflow auf jede Videoeingabe angewendet werden und automatisch „unterstützende Anleitungen“ für verschiedene Tutorials in einem Format generieren, das einfacher zu lesen, zu durchsuchen und zu durchsuchen ist.

Es klingt machbar, aber auch ziemlich herausfordernd.

Voller nützlicher Informationen! Die erste Textversion des zweistündigen KI-Kurses von Master Karpathy, ein neuer Workflow wandelt Videos automatisch in Artikel um

Er hat im Rahmen des GitHub-Projekts minbpe ein Beispiel geschrieben, um seine Fantasie zu veranschaulichen.

Voller nützlicher Informationen! Die erste Textversion des zweistündigen KI-Kurses von Master Karpathy, ein neuer Workflow wandelt Videos automatisch in Artikel um

Adresse: https://github.com/karpathy/minbpe/blob/master/lecture.md

Karpathy sagte, dass dies eine manuelle Aufgabe sei, das heißt, das Video anzusehen und zu übersetzen Artikel im Markdown-Format.

„Ich habe mir nur etwa 4 Minuten des Videos angesehen (also 3 % fertig), und das Schreiben hat etwa 30 Minuten gedauert. Es wäre also großartig, wenn so etwas automatisch erledigt werden könnte.“

Voller nützlicher Informationen! Die erste Textversion des zweistündigen KI-Kurses von Master Karpathy, ein neuer Workflow wandelt Videos automatisch in Artikel um

Als nächstes ist Unterrichtszeit!

Textversion des Kurses „LLM-Wortsegmentierung“

Hallo zusammen, heute werden wir das Thema „Wortsegmentierung“ in LLM besprechen.

Leider ist die „Wortsegmentierung“ eine relativ komplexe und knifflige Komponente der fortschrittlichsten großen Modelle, aber wir müssen sie im Detail verstehen.

Denn viele Mängel des LLM können auf neuronale Netze oder andere scheinbar mysteriöse Faktoren zurückgeführt werden, diese Mängel können jedoch tatsächlich auf die „Wortsegmentierung“ zurückgeführt werden.

Wortsegmentierung auf Zeichenebene

Was ist also Wortsegmentierung?

Tatsächlich habe ich im vorherigen Video „Lasst uns GPT von Grund auf neu erstellen“ bereits die Tokenisierung eingeführt, aber das war nur eine sehr einfache Version auf Zeichenebene.

Wenn Sie zu Google Colab gehen und sich das Video ansehen, werden Sie sehen, dass wir mit den Trainingsdaten (Shakespeare) beginnen, die in Python nur eine große Zeichenfolge sind:

First Citizen: Before we proceed any further, hear me speak.All: Speak, speak.First Citizen: You are all resolved rather to die than to famish?All: Resolved. resolved.First Citizen: First, you know Caius Marcius is chief enemy to the people.All: We know't, we know't.
Nach dem Login kopieren

Aber wie Geben wir die Zeichenfolge in „Was ist mit LLM“ ein?

Wir können sehen, dass wir zunächst ein Vokabular für alle möglichen Zeichen im gesamten Trainingssatz erstellen müssen:

# here are all the unique characters that occur in this textchars = sorted(list(set(text)))vocab_size = len(chars)print(''.join(chars))print(vocab_size)# !$&',-.3:;?ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz# 65
Nach dem Login kopieren

Erstellen Sie dann basierend auf dem Vokabular oben ein Vokabular für die Nachschlagetabelle zwischen einzelnen Zeichen und ganzen Zahlen zur Konvertierung. Diese Nachschlagetabelle ist nur ein Python-Wörterbuch:

stoi = { ch:i for i,ch in enumerate(chars) }itos = { i:ch for i,ch in enumerate(chars) }# encoder: take a string, output a list of integersencode = lambda s: [stoi[c] for c in s]# decoder: take a list of integers, output a stringdecode = lambda l: ''.join([itos[i] for i in l])print(encode("hii there"))print(decode(encode("hii there")))# [46, 47, 47, 1, 58, 46, 43, 56, 43]# hii there
Nach dem Login kopieren

Sobald wir eine Zeichenfolge in eine Folge von Ganzzahlen konvertieren, sehen wir, dass jede Ganzzahl als Index für die 2D-Einbettung der trainierbaren Parameter verwendet wird.

Da unser Vokabular die Größe vocab_size=65 hat, wird diese Einbettungstabelle auch 65 Zeilen haben:

class BigramLanguageModel(nn.Module):def __init__(self, vocab_size):super().__init__()self.token_embedding_table = nn.Embedding(vocab_size, n_embd)def forward(self, idx, targets=None):tok_emb = self.token_embedding_table(idx) # (B,T,C)
Nach dem Login kopieren

Hier „extrahiert“ die Ganzzahl eine Zeile aus der Einbettungstabelle, und diese Zeile ist der Vektor, der die Wortsegmentierung darstellt. Dieser Vektor wird dann als Eingabe für den entsprechenden Zeitschritt in den Transformer eingespeist.

Verwendung des BPE-Algorithmus für die „Character Chunk“-Segmentierung

Das ist alles schön und gut für einen naiven Aufbau eines Sprachmodells auf „Zeichenebene“.

Aber in der Praxis verwenden Menschen in modernen Sprachmodellen komplexere Schemata, um diese repräsentativen Vokabulare aufzubauen.

Konkret funktionieren diese Lösungen nicht auf der Zeichenebene, sondern auf der Ebene „Zeichenblock“. Die Art und Weise, wie diese Chunk-Vokabulare erstellt werden, basiert auf Algorithmen wie Byte Pair Encoding (BPE), die wir im Folgenden ausführlich beschreiben.

Lassen Sie uns kurz die historische Entwicklung dieser Methode betrachten. Der Artikel, der den BPE-Algorithmus auf Byte-Ebene für die Wortsegmentierung von Sprachmodellen verwendet, ist der GPT-2-Artikel „Language Models are Unsupervised Multitask Learners“, der 2019 von OpenAI veröffentlicht wurde. 🔜 . Am Ende dieses Abschnitts steht:

Voller nützlicher Informationen! Die erste Textversion des zweistündigen KI-Kurses von Master Karpathy, ein neuer Workflow wandelt Videos automatisch in Artikel um

Der Wortschatz wurde auf 50.257 Wörter erweitert. Wir haben außerdem die Kontextgröße von 512 auf 1024 Token erhöht und eine größere Batchgröße von 512 verwendet.

Denken Sie daran, dass in der Aufmerksamkeitsebene des Transformers jeder Token mit einer begrenzten Liste vorheriger Token in der Sequenz verknüpft ist.

In diesem Artikel wird darauf hingewiesen, dass die Kontextlänge des GPT-2-Modells von 512 Token in GPT-1 auf 1024 Token gestiegen ist.

Mit anderen Worten, Token ist das grundlegende „Atom“ am Eingang von LLM.

„Tokenisierung“ ist der Prozess der Konvertierung von Originalzeichenfolgen in Python in Tokenlisten und umgekehrt.

Es gibt ein weiteres beliebtes Beispiel, das die Universalität dieser Abstraktion beweist. Wenn Sie im Artikel von Llama 2 auch nach „Token“ suchen, erhalten Sie 63 passende Ergebnisse.

Voller nützlicher Informationen! Die erste Textversion des zweistündigen KI-Kurses von Master Karpathy, ein neuer Workflow wandelt Videos automatisch in Artikel umZum Beispiel wird in der Zeitung behauptet, dass sie mit 2 Billionen Token usw. trainiert haben.

Papieradresse: https://arxiv.org/pdf/2307.09288.pdf

Ein kurzer Vortrag über die Komplexität der Wortsegmentierung

Voller nützlicher Informationen! Die erste Textversion des zweistündigen KI-Kurses von Master Karpathy, ein neuer Workflow wandelt Videos automatisch in Artikel um

Bevor wir uns mit den Details befassen Implementierung, lassen Sie uns kurz erklären, dass es notwendig ist, den Prozess der „Wortsegmentierung“ im Detail zu verstehen.

Die Tokenisierung ist der Kern vieler, vieler seltsamer Probleme im LLM, und ich empfehle Ihnen, sie nicht zu ignorieren. Viele scheinbare Probleme mit der Architektur neuronaler Netzwerke hängen tatsächlich mit der Wortsegmentierung zusammen. Hier nur ein paar Beispiele:

- Warum kann LLM keine Wörter buchstabieren? ——Wortsegmentierung

- Warum kann LLM keine supereinfachen String-Verarbeitungsaufgaben ausführen, wie zum Beispiel das Umkehren von Strings? ——Wortsegmentierung

- Warum ist LLM bei nicht englischsprachigen Aufgaben (z. B. Japanisch) schlechter? ——Partizip

- Warum ist LLM nicht gut im einfachen Rechnen? ——Wortsegmentierung

- Warum stößt GPT-2 beim Codieren in Python auf mehr Probleme? ——Wortsegmentierung

- Warum stoppt mein LLM plötzlich, wenn es die Zeichenfolge sieht? ——Partizip

- Was ist diese seltsame Warnung, die ich bezüglich „nachgestellter Leerzeichen“ erhalten habe? ——Partizip

- Wenn ich LLM nach „SolidGoldMagikarp“ frage, warum stürzt es ab? ——Wortsegmentierung

- Warum sollte ich YAML mit LLM anstelle von JSON verwenden? ——Wortsegmentierung

- Warum ist LLM keine echte End-to-End-Sprachmodellierung? ——Partizip

Voller nützlicher Informationen! Die erste Textversion des zweistündigen KI-Kurses von Master Karpathy, ein neuer Workflow wandelt Videos automatisch in Artikel um

Wir werden am Ende des Videos auf diese Fragen zurückkommen.

Visuelle Vorschau der Wortsegmentierung

Als nächstes laden wir diese Wortsegmentierungs-WebApp.

Voller nützlicher Informationen! Die erste Textversion des zweistündigen KI-Kurses von Master Karpathy, ein neuer Workflow wandelt Videos automatisch in Artikel um

Adresse: https://tiktokenizer.vercel.app/

Der Vorteil dieser Webanwendung besteht darin, dass die Tokenisierung in Echtzeit im Webbrowser ausgeführt wird, sodass Sie problemlos Text eingeben können Geben Sie die Zeichenfolge auf der Eingabeseite ein und sehen Sie sich rechts die Ergebnisse der Wortsegmentierung an.

Oben können Sie sehen, dass wir derzeit den gpt2-Tokenizer verwenden, und Sie können sehen, dass die in diesem Beispiel eingefügte Zeichenfolge derzeit in 300 Tokens tokenisiert wird.

Hier sind sie deutlich farblich dargestellt:

Voller nützlicher Informationen! Die erste Textversion des zweistündigen KI-Kurses von Master Karpathy, ein neuer Workflow wandelt Videos automatisch in Artikel um

Zum Beispiel wird die Zeichenfolge „Tokenization“ in Token30642 codiert, gefolgt von Token 1634.

token „is“ (beachten Sie, dass dies aus drei Zeichen besteht, einschließlich des vorangehenden Leerzeichens, das ist wichtig!) ist 318.

Seien Sie vorsichtig bei der Verwendung von Leerzeichen, da diese unbedingt in der Zeichenfolge vorhanden sind und zusammen mit allen anderen Zeichen formuliert werden müssen. Aus Gründen der Übersichtlichkeit wird es bei der Visualisierung jedoch meist weggelassen.

Sie können die Visualisierungsfunktion unten in der App ein- und ausschalten. Ebenso ist das Token „at“ 379, „the“ 262 und so weiter.

Als nächstes haben wir ein einfaches Rechenbeispiel.

Hier sehen wir, dass der Tokenizer bei der Zerlegung von Zahlen inkonsistent sein kann. Beispielsweise ist die Zahl 127 ein Token mit drei Zeichen, aber die Zahl 677 liegt daran, dass es zwei Token gibt: 6 (beachten Sie auch hier das vorhergehende Leerzeichen) und 77.

Wir verlassen uns auf LLM, um diese Beliebigkeit zu erklären.

Es muss innerhalb seiner Parameter und während des Trainings etwas über diese beiden Token (6 und 77 ergeben zusammen die Zahl 677) lernen.

Ebenso können wir sehen, dass, wenn das LLM vorhersagen möchte, dass das Ergebnis dieser Summe die Zahl 804 ist, es diese in zwei Zeitschritten ausgeben muss:

Zuerst muss es den Token „8“ ausgeben , und dann ist es Token „04“.

Bitte beachten Sie, dass alle diese Aufteilungen völlig willkürlich aussehen. Im folgenden Beispiel können wir sehen, dass 1275 „12“ und dann „75“ ist, 6773 tatsächlich drei Token „6“, „77“ und „3“ sind und 8041 „8“ und „041“ ist.

(Fortsetzung folgt...)

(TODO: Wenn Sie mit der Textversion des Inhalts fortfahren möchten, es sei denn, wir finden heraus, wie wir ihn automatisch aus dem Video generieren können)

Voller nützlicher Informationen! Die erste Textversion des zweistündigen KI-Kurses von Master Karpathy, ein neuer Workflow wandelt Videos automatisch in Artikel um

Netizens sind online, um Ratschläge zu geben

Netizens sagten: Großartig, ich lese diese Beiträge tatsächlich lieber, anstatt Videos anzusehen, es ist einfacher, meinen eigenen Rhythmus zu kontrollieren.

Voller nützlicher Informationen! Die erste Textversion des zweistündigen KI-Kurses von Master Karpathy, ein neuer Workflow wandelt Videos automatisch in Artikel um

Einige Internetnutzer gaben Karpathy einen Rat:

„Es fühlt sich schwierig an, aber mit LangChain könnte es möglich sein. Ich habe mich gefragt, ob ich die Flüstertranskription verwenden könnte, um eine übergeordnete Gliederung mit klaren Kapiteln zu erstellen und diese Kapitelabschnitte dann parallel zu verarbeiten und mich dabei auf jedes einzelne Kapitel im Kontext zu konzentrieren.“ Der Gesamtinhalt des Kapitelblocks (für jedes parallel verarbeitete Kapitel werden auch Bilder generiert. Anschließend werden alle generierten Referenzmarken bis zum Ende des Artikels zusammengestellt.)

Voller nützlicher Informationen! Die erste Textversion des zweistündigen KI-Kurses von Master Karpathy, ein neuer Workflow wandelt Videos automatisch in Artikel um

Jemand hat dafür eine Pipeline geschrieben, die bald Open Source sein wird.


Das obige ist der detaillierte Inhalt vonVoller nützlicher Informationen! Die erste Textversion des zweistündigen KI-Kurses von Master Karpathy, ein neuer Workflow wandelt Videos automatisch in Artikel um. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Laravels Geospatial: Optimierung interaktiver Karten und großen Datenmengen Laravels Geospatial: Optimierung interaktiver Karten und großen Datenmengen Apr 08, 2025 pm 12:24 PM

Verarbeiten Sie 7 Millionen Aufzeichnungen effizient und erstellen Sie interaktive Karten mit Geospatial -Technologie. In diesem Artikel wird untersucht, wie über 7 Millionen Datensätze mithilfe von Laravel und MySQL effizient verarbeitet und in interaktive Kartenvisualisierungen umgewandelt werden können. Erstes Herausforderungsprojektanforderungen: Mit 7 Millionen Datensätzen in der MySQL -Datenbank wertvolle Erkenntnisse extrahieren. Viele Menschen erwägen zunächst Programmiersprachen, aber ignorieren die Datenbank selbst: Kann sie den Anforderungen erfüllen? Ist Datenmigration oder strukturelle Anpassung erforderlich? Kann MySQL einer so großen Datenbelastung standhalten? Voranalyse: Schlüsselfilter und Eigenschaften müssen identifiziert werden. Nach der Analyse wurde festgestellt, dass nur wenige Attribute mit der Lösung zusammenhängen. Wir haben die Machbarkeit des Filters überprüft und einige Einschränkungen festgelegt, um die Suche zu optimieren. Kartensuche basierend auf der Stadt

Wie man MySQL löst, kann nicht gestartet werden Wie man MySQL löst, kann nicht gestartet werden Apr 08, 2025 pm 02:21 PM

Es gibt viele Gründe, warum MySQL Startup fehlschlägt und durch Überprüfung des Fehlerprotokolls diagnostiziert werden kann. Zu den allgemeinen Ursachen gehören Portkonflikte (prüfen Portbelegung und Änderung der Konfiguration), Berechtigungsprobleme (Überprüfen Sie den Dienst Ausführen von Benutzerberechtigungen), Konfigurationsdateifehler (Überprüfung der Parametereinstellungen), Datenverzeichniskorruption (Wiederherstellung von Daten oder Wiederaufbautabellenraum), InnoDB-Tabellenraumprobleme (prüfen IBDATA1-Dateien), Plug-in-Ladeversagen (Überprüfen Sie Fehlerprotokolle). Wenn Sie Probleme lösen, sollten Sie sie anhand des Fehlerprotokolls analysieren, die Hauptursache des Problems finden und die Gewohnheit entwickeln, Daten regelmäßig zu unterstützen, um Probleme zu verhindern und zu lösen.

So verwenden Sie MySQL nach der Installation So verwenden Sie MySQL nach der Installation Apr 08, 2025 am 11:48 AM

Der Artikel führt den Betrieb der MySQL -Datenbank vor. Zunächst müssen Sie einen MySQL -Client wie MySQLworkBench oder Befehlszeilen -Client installieren. 1. Verwenden Sie den Befehl mySQL-uroot-P, um eine Verbindung zum Server herzustellen und sich mit dem Stammkonto-Passwort anzumelden. 2. Verwenden Sie die Erstellung von Createdatabase, um eine Datenbank zu erstellen, und verwenden Sie eine Datenbank aus. 3.. Verwenden Sie CreateTable, um eine Tabelle zu erstellen, Felder und Datentypen zu definieren. 4. Verwenden Sie InsertInto, um Daten einzulegen, Daten abzufragen, Daten nach Aktualisierung zu aktualisieren und Daten nach Löschen zu löschen. Nur indem Sie diese Schritte beherrschen, lernen, mit gemeinsamen Problemen umzugehen und die Datenbankleistung zu optimieren, können Sie MySQL effizient verwenden.

Verstehen von Säureeigenschaften: Die Säulen einer zuverlässigen Datenbank Verstehen von Säureeigenschaften: Die Säulen einer zuverlässigen Datenbank Apr 08, 2025 pm 06:33 PM

Detaillierte Erläuterung von Datenbanksäureattributen Säureattribute sind eine Reihe von Regeln, um die Zuverlässigkeit und Konsistenz von Datenbanktransaktionen sicherzustellen. Sie definieren, wie Datenbanksysteme Transaktionen umgehen, und sorgen dafür, dass die Datenintegrität und -genauigkeit auch im Falle von Systemabstürzen, Leistungsunterbrechungen oder mehreren Benutzern gleichzeitiger Zugriff. Säureattributübersicht Atomizität: Eine Transaktion wird als unteilbare Einheit angesehen. Jeder Teil schlägt fehl, die gesamte Transaktion wird zurückgerollt und die Datenbank behält keine Änderungen bei. Wenn beispielsweise eine Banküberweisung von einem Konto abgezogen wird, jedoch nicht auf ein anderes erhöht wird, wird der gesamte Betrieb widerrufen. begintransaktion; updateAccountsSetBalance = Balance-100WH

Remote Senior Backend Engineers (Plattformen) benötigen Kreise Remote Senior Backend Engineers (Plattformen) benötigen Kreise Apr 08, 2025 pm 12:27 PM

Remote Senior Backend Engineer Job Vacant Company: Circle Standort: Remote-Büro-Jobtyp: Vollzeitgehalt: 130.000 bis 140.000 US-Dollar Stellenbeschreibung Nehmen Sie an der Forschung und Entwicklung von Mobilfunkanwendungen und öffentlichen API-bezogenen Funktionen, die den gesamten Lebenszyklus der Softwareentwicklung abdecken. Die Hauptaufgaben erledigen die Entwicklungsarbeit unabhängig von RubyonRails und arbeiten mit dem Front-End-Team von React/Redux/Relay zusammen. Erstellen Sie die Kernfunktionalität und -verbesserungen für Webanwendungen und arbeiten Sie eng mit Designer und Führung während des gesamten funktionalen Designprozesses zusammen. Fördern Sie positive Entwicklungsprozesse und priorisieren Sie die Iterationsgeschwindigkeit. Erfordert mehr als 6 Jahre komplexes Backend für Webanwendungen

Kann MySQL JSON zurückgeben? Kann MySQL JSON zurückgeben? Apr 08, 2025 pm 03:09 PM

MySQL kann JSON -Daten zurückgeben. Die JSON_EXTRACT -Funktion extrahiert Feldwerte. Über komplexe Abfragen sollten Sie die Where -Klausel verwenden, um JSON -Daten zu filtern, aber auf die Leistungsauswirkungen achten. Die Unterstützung von MySQL für JSON nimmt ständig zu, und es wird empfohlen, auf die neuesten Versionen und Funktionen zu achten.

MySQL kann nach dem Herunterladen nicht installiert werden MySQL kann nach dem Herunterladen nicht installiert werden Apr 08, 2025 am 11:24 AM

Die Hauptgründe für den Fehler bei MySQL -Installationsfehlern sind: 1. Erlaubnisprobleme, Sie müssen als Administrator ausgeführt oder den Sudo -Befehl verwenden. 2. Die Abhängigkeiten fehlen, und Sie müssen relevante Entwicklungspakete installieren. 3. Portkonflikte müssen Sie das Programm schließen, das Port 3306 einnimmt, oder die Konfigurationsdatei ändern. 4. Das Installationspaket ist beschädigt. Sie müssen die Integrität herunterladen und überprüfen. 5. Die Umgebungsvariable ist falsch konfiguriert und die Umgebungsvariablen müssen korrekt entsprechend dem Betriebssystem konfiguriert werden. Lösen Sie diese Probleme und überprüfen Sie jeden Schritt sorgfältig, um MySQL erfolgreich zu installieren.

Master SQL Limit -Klausel: Steuern Sie die Anzahl der Zeilen in einer Abfrage Master SQL Limit -Klausel: Steuern Sie die Anzahl der Zeilen in einer Abfrage Apr 08, 2025 pm 07:00 PM

SQllimit -Klausel: Steuern Sie die Anzahl der Zeilen in Abfrageergebnissen. Die Grenzklausel in SQL wird verwendet, um die Anzahl der von der Abfrage zurückgegebenen Zeilen zu begrenzen. Dies ist sehr nützlich, wenn große Datensätze, paginierte Anzeigen und Testdaten verarbeitet werden und die Abfrageeffizienz effektiv verbessern können. Grundlegende Syntax der Syntax: SelectColumn1, Spalte2, ... Fromtable_Namelimitnumber_of_rows; number_of_rows: Geben Sie die Anzahl der zurückgegebenen Zeilen an. Syntax mit Offset: SelectColumn1, Spalte2, ... Fromtable_NamelimitOffset, Number_of_rows; Offset: Skip überspringen

See all articles