Heim Backend-Entwicklung Python-Tutorial Python GIL-Alternative: Die Grenzen der Multithread-Programmierung erweitern

Python GIL-Alternative: Die Grenzen der Multithread-Programmierung erweitern

Feb 26, 2024 pm 10:10 PM
多线程 性能 替代方案

Python GIL替代方案:突破多线程编程的限制

python GIL (Global Interpreter Lock) ist ein Mechanismus, der verhindert, dass mehrere Threads gleichzeitig Bytecode ausführen. Es macht das Threading des Python-Interpreters sicher, führt aber auch zu einer schlechten Multithread-Programmierleistung. Um die Einschränkungen der GIL zu überwinden, wurden verschiedene Alternativen vorgeschlagen, von denen einige in den Python-Interpreter integriert wurden und andere als Bibliotheken von Drittanbietern bereitgestellt werden. 1. Einschränkungen von GIL Python GIL ist eine Mutex-Sperre, die sicherstellt, dass nur ein Thread gleichzeitig Python-Bytecode ausführen kann. Dadurch wird verhindert, dass mehrere Threads gleichzeitig dasselbe Objekt ändern, was zu Datenwettläufen führt. Allerdings hat die GIL auch negative Auswirkungen auf die Leistung der Multithread-Programmierung. Da die GIL nur einem Thread die gleichzeitige Ausführung von Bytecode erlaubt, müssen andere Threads in der Schlange stehen, was zu ernsthaften Leistungsengpässen führen kann. 2. GIL-Alternative

Um die Einschränkungen von GIL zu beseitigen, wurden verschiedene Alternativen vorgeschlagen. Diese Lösungen sind hauptsächlich in zwei Kategorien unterteilt: Eine ist in den Python-Interpreter integriert und die andere wird als Bibliothek eines Drittanbieters bereitgestellt.

1. GIL-Alternative in den Python-Interpreter integriert

Zwei in den Python-Interpreter integrierte GIL-Alternativen:

Thread Local Storage (TLS): TLS ermöglicht es jedem Thread, über eine eigene Kopie lokaler Variablen zu verfügen, wodurch der Wettbewerb um gemeinsam genutzte Daten vermieden wird. Dies kann die Leistung der Multithread-Programmierung verbessern, erhöht aber auch die Speichernutzung.

Concurrent programming

Tools

Paket (concurrent.futures): Das concurrent.futures-Modul bietet eine Reihe von Tools für die

concurrent
    Programmierung, einschließlich
  • Thread-Pool
  • und Prozesspool. Thread-Pools können zur Verwaltung der Erstellung und Zerstörung von Threads verwendet werden, während Prozesspools zur Verwaltung der Erstellung und Zerstörung von Prozessen verwendet werden können. Beide Tools können die Leistung der Multithread-Programmierung verbessern.
  • 2. GIL-Alternativen, die von Bibliotheken Dritter bereitgestellt werden Zusätzlich zu den im Python-Interpreter integrierten GIL-Alternativen gibt es einige Bibliotheken von Drittanbietern, die ebenfalls GIL-Alternativen bereitstellen. Zu diesen Bibliotheken gehören:
  • Cython: Cython ist ein Compiler, der Python-Code in C-Code kompiliert. C-Code kann parallel ausgeführt werden, sodass die Verwendung von Cython die Leistung der Multithread-Programmierung in Python verbessern kann.

Numba: Numba ist ein Compiler, der Python-Code in Maschinencode kompiliert. Maschinencode kann auch parallel ausgeführt werden, sodass der Einsatz von Numba auch die Leistung der Multithread-Programmierung in Python verbessern kann. PyPy: PyPy ist ein Interpreter, der die Python-Sprache implementiert. PyPy verwendet eine andere GIL-Implementierung, die die Leistung der Multithread-Programmierung verbessert.

    3. Wählen Sie die richtige GIL-Alternative
  • Bei der Auswahl einer GIL-Alternative sind mehrere Faktoren zu berücksichtigen:
  • Anwendungsmerkmale: Einige GIL-Alternativen sind für bestimmte Anwendungsarten besser geeignet. TLS eignet sich beispielsweise besser für Anwendungen mit weniger Datenrennen, während Toolkits für die gleichzeitige Programmierung besser für Anwendungen mit mehr Datenrennen geeignet sind.

Leistungsanforderungen Ihrer Anwendung: Es gibt GIL-Alternativen, die eine höhere Leistung bieten, aber möglicherweise mehr Speicher oder eine komplexere Programmierung erfordern. Kompatibilitätsanforderungen für Anwendungen: Einige GIL-Alternativen sind möglicherweise nicht mit bestimmten Python-Bibliotheken oder

Frameworks

kompatibel.

  • Nachdem Sie diese Faktoren abgewogen haben, können Sie eine geeignete GIL-Alternative auswählen, um die Leistung der Python-Multithread-Programmierung zu verbessern.
  • 4. Democode
  • Der folgende Democode zeigt, wie Sie das Modul concurrent.futures verwenden, um die Leistung der Python-Multithread-Programmierung zu verbessern:
  • import concurrent.futures
    
    # 要执行的任务列表
    tasks = [1, 2, 3, 4, 5]
    
    # 使用线程池执行任务
    with concurrent.futures.ThreadPoolExecutor() as executor:
    # 使用map()方法并行执行任务
    results = executor.map(lambda x: x * x, tasks)
    
    # 打印结果
    print(results)
    Nach dem Login kopieren
Dieser Code verbessert die Leistung des Programms, indem er einen Thread-Pool verwendet, um Aufgaben parallel auszuführen.

Das obige ist der detaillierte Inhalt vonPython GIL-Alternative: Die Grenzen der Multithread-Programmierung erweitern. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Java-Tutorial
1662
14
PHP-Tutorial
1262
29
C#-Tutorial
1235
24
Leistungsvergleich verschiedener Java-Frameworks Leistungsvergleich verschiedener Java-Frameworks Jun 05, 2024 pm 07:14 PM

Leistungsvergleich verschiedener Java-Frameworks: REST-API-Anforderungsverarbeitung: Vert.x ist am besten, mit einer Anforderungsrate von 2-mal SpringBoot und 3-mal Dropwizard. Datenbankabfrage: HibernateORM von SpringBoot ist besser als ORM von Vert.x und Dropwizard. Caching-Vorgänge: Der Hazelcast-Client von Vert.x ist den Caching-Mechanismen von SpringBoot und Dropwizard überlegen. Geeignetes Framework: Wählen Sie entsprechend den Anwendungsanforderungen. Vert.x eignet sich für leistungsstarke Webdienste, SpringBoot eignet sich für datenintensive Anwendungen und Dropwizard eignet sich für Microservice-Architekturen.

Wie gehe ich mit gemeinsam genutzten Ressourcen beim Multithreading in C++ um? Wie gehe ich mit gemeinsam genutzten Ressourcen beim Multithreading in C++ um? Jun 03, 2024 am 10:28 AM

Mutexe werden in C++ verwendet, um gemeinsam genutzte Multithread-Ressourcen zu verarbeiten: Erstellen Sie Mutexe über std::mutex. Verwenden Sie mtx.lock(), um einen Mutex zu erhalten und exklusiven Zugriff auf gemeinsam genutzte Ressourcen bereitzustellen. Verwenden Sie mtx.unlock(), um den Mutex freizugeben.

Wie kann die Leistung von Multithread-Programmen in C++ optimiert werden? Wie kann die Leistung von Multithread-Programmen in C++ optimiert werden? Jun 05, 2024 pm 02:04 PM

Zu den wirksamen Techniken zur Optimierung der C++-Multithread-Leistung gehört die Begrenzung der Anzahl der Threads, um Ressourcenkonflikte zu vermeiden. Verwenden Sie leichte Mutex-Sperren, um Konflikte zu reduzieren. Optimieren Sie den Umfang der Sperre und minimieren Sie die Wartezeit. Verwenden Sie sperrenfreie Datenstrukturen, um die Parallelität zu verbessern. Vermeiden Sie geschäftiges Warten und benachrichtigen Sie Threads über Ereignisse über die Ressourcenverfügbarkeit.

Herausforderungen und Gegenmaßnahmen der C++-Speicherverwaltung in Multithread-Umgebungen? Herausforderungen und Gegenmaßnahmen der C++-Speicherverwaltung in Multithread-Umgebungen? Jun 05, 2024 pm 01:08 PM

In einer Multithread-Umgebung steht die C++-Speicherverwaltung vor den folgenden Herausforderungen: Datenrennen, Deadlocks und Speicherlecks. Zu den Gegenmaßnahmen gehören: 1. Verwendung von Synchronisationsmechanismen, wie Mutexe und atomare Variablen; 3. Verwendung von intelligenten Zeigern; 4. Implementierung von Garbage Collection;

Herausforderungen und Strategien zum Testen von Multithread-Programmen in C++ Herausforderungen und Strategien zum Testen von Multithread-Programmen in C++ May 31, 2024 pm 06:34 PM

Multithread-Programmtests stehen vor Herausforderungen wie Nichtwiederholbarkeit, Parallelitätsfehlern, Deadlocks und mangelnder Sichtbarkeit. Zu den Strategien gehören: Unit-Tests: Schreiben Sie Unit-Tests für jeden Thread, um das Thread-Verhalten zu überprüfen. Multithread-Simulation: Verwenden Sie ein Simulations-Framework, um Ihr Programm mit Kontrolle über die Thread-Planung zu testen. Erkennung von Datenrennen: Verwenden Sie Tools, um potenzielle Datenrennen zu finden, z. B. Valgrind. Debuggen: Verwenden Sie einen Debugger (z. B. GDB), um den Status des Laufzeitprogramms zu untersuchen und die Quelle des Datenwettlaufs zu finden.

Wie gut ist die Leistung von Zufallszahlengeneratoren in Golang? Wie gut ist die Leistung von Zufallszahlengeneratoren in Golang? Jun 01, 2024 pm 09:15 PM

Der beste Weg, Zufallszahlen in Go zu generieren, hängt von der Sicherheitsstufe ab, die Ihre Anwendung erfordert. Geringe Sicherheit: Verwenden Sie das Paket math/rand, um Pseudozufallszahlen zu generieren, die für die meisten Anwendungen geeignet sind. Hohe Sicherheit: Verwenden Sie das Paket crypto/rand, um kryptografisch sichere Zufallsbytes zu generieren, geeignet für Anwendungen, die eine stärkere Zufälligkeit erfordern.

Leistungsvergleich von Java-Frameworks Leistungsvergleich von Java-Frameworks Jun 04, 2024 pm 03:56 PM

Laut Benchmarks sind Quarkus (schneller Start, geringer Speicher) oder Micronaut (TechEmpower ausgezeichnet) für kleine, leistungsstarke Anwendungen die ideale Wahl. SpringBoot eignet sich für große Full-Stack-Anwendungen, weist jedoch etwas langsamere Startzeiten und Speichernutzung auf.

Leistungsvergleich von C++ mit anderen Sprachen Leistungsvergleich von C++ mit anderen Sprachen Jun 01, 2024 pm 10:04 PM

Bei der Entwicklung leistungsstarker Anwendungen übertrifft C++ andere Sprachen, insbesondere bei Mikro-Benchmarks. Bei Makro-Benchmarks können die Komfort- und Optimierungsmechanismen anderer Sprachen wie Java und C# besser abschneiden. In der Praxis schneidet C++ bei der Bildverarbeitung, bei numerischen Berechnungen und bei der Spieleentwicklung gut ab, und die direkte Steuerung der Speicherverwaltung und des Hardwarezugriffs bringt offensichtliche Leistungsvorteile.

See all articles